A citation-based method for searching scientific literature

R O Wong. Annu Rev Neurosci 1999
Times Cited: 356







List of co-cited articles
979 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Retinal waves coordinate patterned activity throughout the developing visual system.
James B Ackman, Timothy J Burbridge, Michael C Crair. Nature 2012
250
39

Mechanisms underlying spontaneous patterned activity in developing neural circuits.
Aaron G Blankenship, Marla B Feller. Nat Rev Neurosci 2010
441
31

Mechanisms underlying development of visual maps and receptive fields.
Andrew D Huberman, Marla B Feller, Barbara Chapman. Annu Rev Neurosci 2008
403
29

An instructive role for patterned spontaneous retinal activity in mouse visual map development.
Hong-ping Xu, Moran Furman, Yann S Mineur, Hui Chen, Sarah L King, David Zenisek, Z Jimmy Zhou, Daniel A Butts, Ning Tian, Marina R Picciotto,[...]. Neuron 2011
114
28

Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.
Todd McLaughlin, Christine L Torborg, Marla B Feller, Dennis D M O'Leary. Neuron 2003
291
24

Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
M B Feller, D P Wellis, D Stellwagen, F S Werblin, C J Shatz. Science 1996
397
22





Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.
Ben K Stafford, Alexander Sher, Alan M Litke, David A Feldheim. Neuron 2009
91
17

Visual map development depends on the temporal pattern of binocular activity in mice.
Jiayi Zhang, James B Ackman, Hong-Ping Xu, Michael C Crair. Nat Neurosci 2011
90
17


Retinal waves: mechanisms and function in visual system development.
Sally I Firth, Chih-Tien Wang, Marla B Feller. Cell Calcium 2005
82
19

A role for correlated spontaneous activity in the assembly of neural circuits.
Lowry A Kirkby, Georgeann S Sack, Alana Firl, Marla B Feller. Neuron 2013
171
16



Retinal waves trigger spindle bursts in the neonatal rat visual cortex.
Ileana L Hanganu, Yehezkel Ben-Ari, Rustem Khazipov. J Neurosci 2006
197
15

Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina.
Mohsin Md Syed, Seunghoon Lee, Jijian Zheng, Z Jimmy Zhou. J Physiol 2004
85
16

Thalamic relay of spontaneous retinal activity prior to vision.
R Mooney, A A Penn, R Gallego, C J Shatz. Neuron 1996
170
13

Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves.
Kevin J Ford, Aude L Félix, Marla B Feller. J Neurosci 2012
51
25

Spontaneous patterned retinal activity and the refinement of retinal projections.
Christine L Torborg, Marla B Feller. Prog Neurobiol 2005
174
13

Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity.
Jay Demas, Botir T Sagdullaev, Erick Green, Lisa Jaubert-Miazza, Maureen A McCall, Ronald G Gregg, Rachel O L Wong, William Guido. Neuron 2006
97
13

Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
Anand R Chandrasekaran, Daniel T Plas, Ernesto Gonzalez, Michael C Crair. J Neurosci 2005
127
13

Role of emergent neural activity in visual map development.
James B Ackman, Michael C Crair. Curr Opin Neurobiol 2014
109
13





The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.
Aaron G Blankenship, Aaron M Hamby, Alana Firl, Shri Vyas, Stephan Maxeiner, Klaus Willecke, Marla B Feller. J Neurosci 2011
44
27

High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections.
Christine L Torborg, Kristi A Hansen, Marla B Feller. Nat Neurosci 2005
117
12

Competition in retinogeniculate patterning driven by spontaneous activity.
A A Penn, P A Riquelme, M B Feller, C J Shatz. Science 1998
382
12

Intersecting circuits generate precisely patterned retinal waves.
Alejandro Akrouh, Daniel Kerschensteiner. Neuron 2013
33
36

Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse.
Alessandro Maccione, Matthias H Hennig, Mauro Gandolfo, Oliver Muthmann, James van Coppenhagen, Stephen J Eglen, Luca Berdondini, Evelyne Sernagor. J Physiol 2014
58
20


Synaptic and extrasynaptic factors governing glutamatergic retinal waves.
Aaron G Blankenship, Kevin J Ford, Juliette Johnson, Rebecca P Seal, Robert H Edwards, David R Copenhagen, Marla B Feller. Neuron 2009
68
16

Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor.
Chao Sun, David K Warland, Jose M Ballesteros, Deborah van der List, Leo M Chalupa. Proc Natl Acad Sci U S A 2008
59
18



Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves.
Alana Firl, Georgeann S Sack, Zachary L Newman, Hiroaki Tani, Marla B Feller. J Neurophysiol 2013
20
50

Dynamic processes shape spatiotemporal properties of retinal waves.
M B Feller, D A Butts, H L Aaron, D S Rokhsar, C J Shatz. Neuron 1997
123
10


Development of single retinofugal axon arbors in normal and β2 knock-out mice.
Onkar S Dhande, Ethan W Hua, Emily Guh, Jonathan Yeh, Shivani Bhatt, Yueyi Zhang, Edward S Ruthazer, Marla B Feller, Michael C Crair. J Neurosci 2011
82
10



Dynamics of retinal waves are controlled by cyclic AMP.
D Stellwagen, C J Shatz, M B Feller. Neuron 1999
105
9

A conserved switch in sensory processing prepares developing neocortex for vision.
Matthew T Colonnese, Anna Kaminska, Marat Minlebaev, Mathieu Milh, Bernard Bloem, Sandra Lescure, Guy Moriette, Catherine Chiron, Yehezkel Ben-Ari, Rustem Khazipov. Neuron 2010
164
9

Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors.
Timothy J Burbridge, Hong-Ping Xu, James B Ackman, Xinxin Ge, Yueyi Zhang, Mei-Jun Ye, Z Jimmy Zhou, Jian Xu, Anis Contractor, Michael C Crair. Neuron 2014
63
14

Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry.
David A Arroyo, Marla B Feller. Front Neural Circuits 2016
34
26



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.