A citation-based method for searching scientific literature


List of co-cited articles
1534 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity.
D Jonathan Horsford, Minh-Thanh T Nguyen, Grant C Sellar, Rashmi Kothary, Heinz Arnheiter, Roderick R McInnes. Development 2005
144
47

Eye morphogenesis and patterning of the optic vesicle.
Sabine Fuhrmann. Curr Top Dev Biol 2010
223
42



Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10.
Sheldon Rowan, C-M Amy Chen, Tracy L Young, David E Fisher, Constance L Cepko. Development 2004
120
33

Self-organizing optic-cup morphogenesis in three-dimensional culture.
Mototsugu Eiraku, Nozomu Takata, Hiroki Ishibashi, Masako Kawada, Eriko Sakakura, Satoru Okuda, Kiyotoshi Sekiguchi, Taiji Adachi, Yoshiki Sasai. Nature 2011
33


Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium.
Naoko Fujimura, Makoto M Taketo, Mikiro Mori, Vladimir Korinek, Zbynek Kozmik. Dev Biol 2009
102
32

Otx genes are required for tissue specification in the developing eye.
J R Martinez-Morales, M Signore, D Acampora, A Simeone, P Bovolenta. Development 2001
187
30

Eye development: a view from the retina pigmented epithelium.
Juan Ramón Martínez-Morales, Isabel Rodrigo, Paola Bovolenta. Bioessays 2004
173
29

A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development.
Kapil Bharti, Melanie Gasper, Jingxing Ou, Martha Brucato, Katharina Clore-Gronenborn, James Pickel, Heinz Arnheiter. PLoS Genet 2012
89
32

OTX2 activates the molecular network underlying retina pigment epithelium differentiation.
Juan Ramón Martínez-Morales, Vincent Dolez, Isabel Rodrigo, Raffaella Zaccarini, Laurence Leconte, Paola Bovolenta, Simon Saule. J Biol Chem 2003
126
28

Self-formation of optic cups and storable stratified neural retina from human ESCs.
Tokushige Nakano, Satoshi Ando, Nozomu Takata, Masako Kawada, Keiko Muguruma, Kiyotoshi Sekiguchi, Koichi Saito, Shigenobu Yonemura, Mototsugu Eiraku, Yoshiki Sasai. Cell Stem Cell 2012
792
28


Early eye development in vertebrates.
R L Chow, R A Lang. Annu Rev Cell Dev Biol 2001
451
26

Specification of the vertebrate eye by a network of eye field transcription factors.
Michael E Zuber, Gaia Gestri, Andrea S Viczian, Giuseppina Barsacchi, William A Harris. Development 2003
342
26

Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein.
C A Hodgkinson, K J Moore, A Nakayama, E Steingrímsson, N G Copeland, N A Jenkins, H Arnheiter. Cell 1993
897
24

The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye.
Kapil Bharti, Minh-Thanh T Nguyen, Susan Skuntz, Stefano Bertuzzi, Heinz Arnheiter. Pigment Cell Res 2006
144
24



Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6.
Nicole Bäumer, Till Marquardt, Anastassia Stoykova, Derek Spieler, Dieter Treichel, Ruth Ashery-Padan, Peter Gruss. Development 2003
115
22

Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo.
Frank Müller, Hermann Rohrer, Astrid Vogel-Höpker. Development 2007
82
26

The Rx homeobox gene is essential for vertebrate eye development.
P H Mathers, A Grinberg, K A Mahon, M Jamrich. Nature 1997
541
22

Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF.
Kapil Bharti, Wenfang Liu, Tamas Csermely, Stefano Bertuzzi, Heinz Arnheiter. Development 2008
98
21

Modeling early retinal development with human embryonic and induced pluripotent stem cells.
Jason S Meyer, Rebecca L Shearer, Elizabeth E Capowski, Lynda S Wright, Kyle A Wallace, Erin L McMillan, Su-Chun Zhang, David M Gamm. Proc Natl Acad Sci U S A 2009
401
20

Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells.
Fumitaka Osakada, Hanako Ikeda, Michiko Mandai, Takafumi Wataya, Kiichi Watanabe, Nagahisa Yoshimura, Akinori Akaike, Yoshiki Sasai, Masayo Takahashi. Nat Biotechnol 2008
413
20

Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation.
M Burmeister, J Novak, M Y Liang, S Basu, L Ploder, N L Hawes, D Vidgen, F Hoover, D Goldman, V I Kalnins,[...]. Nat Genet 1996
417
19


Retinal pigment epithelium development, plasticity, and tissue homeostasis.
Sabine Fuhrmann, ChangJiang Zou, Edward M Levine. Exp Eye Res 2014
129
19

Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development.
A Vogel-Höpker, T Momose, H Rohrer, K Yasuda, L Ishihara, D H Rapaport. Mech Dev 2000
108
17


Pax6 is required for the multipotent state of retinal progenitor cells.
T Marquardt, R Ashery-Padan, N Andrejewski, R Scardigli, F Guillemot, P Gruss. Cell 2001
679
17

Lhx2 links the intrinsic and extrinsic factors that control optic cup formation.
Sanghee Yun, Yukio Saijoh, Karla E Hirokawa, Daniel Kopinke, L Charles Murtaugh, Edwin S Monuki, Edward M Levine. Development 2009
62
27

Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6.
M Schwarz, F Cecconi, G Bernier, N Andrejewski, B Kammandel, M Wagner, P Gruss. Development 2000
199
16


Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells.
David E Buchholz, Sherry T Hikita, Teisha J Rowland, Amy M Friedrich, Cassidy R Hinman, Lincoln V Johnson, Dennis O Clegg. Stem Cells 2009
286
15

Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells.
Maria Idelson, Ruslana Alper, Alexey Obolensky, Etti Ben-Shushan, Itzhak Hemo, Nurit Yachimovich-Cohen, Hanita Khaner, Yoav Smith, Ofer Wiser, Michal Gropp,[...]. Cell Stem Cell 2009
303
15

Patterning the optic neuroepithelium by FGF signaling and Ras activation.
S Zhao, F C Hung, J S Colvin, A White, W Dai, F J Lovicu, D M Ornitz, P A Overbeek. Development 2001
82
18

Efficient generation of retinal progenitor cells from human embryonic stem cells.
Deepak A Lamba, Mike O Karl, Carol B Ware, Thomas A Reh. Proc Natl Acad Sci U S A 2006
459
15

Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment.
Jason S Meyer, Sara E Howden, Kyle A Wallace, Amelia D Verhoeven, Lynda S Wright, Elizabeth E Capowski, Isabel Pinilla, Jessica M Martin, Shulan Tian, Ron Stewart,[...]. Stem Cells 2011
281
15

RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling.
Jörg Steinfeld, Ichie Steinfeld, Nicola Coronato, Meggi-Lee Hampel, Paul G Layer, Masasuke Araki, Astrid Vogel-Höpker. Development 2013
45
33


Vax genes ventralize the embryonic eye.
Stina H Mui, Jin Woo Kim, Greg Lemke, Stefano Bertuzzi. Genes Dev 2005
98
14


In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction.
Fumitaka Osakada, Zi-Bing Jin, Yasuhiko Hirami, Hanako Ikeda, Teruko Danjyo, Kiichi Watanabe, Yoshiki Sasai, Masayo Takahashi. J Cell Sci 2009
276
13

Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina.
Anne Galy, Bertrand Néron, Nathalie Planque, Simon Saule, Alain Eychène. Dev Biol 2002
63
20

Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function.
C Chiang, Y Litingtung, E Lee, K E Young, J L Corden, H Westphal, P A Beachy. Nature 1996
13

Midline signalling is required for Pax gene regulation and patterning of the eyes.
R Macdonald, K A Barth, Q Xu, N Holder, I Mikkola, S W Wilson. Development 1995
363
13




Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.