A citation-based method for searching scientific literature

F J Livesey, C L Cepko. Nat Rev Neurosci 2001
Times Cited: 684







List of co-cited articles
1012 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Cell fate determination in the vertebrate retina.
C L Cepko, C P Austin, X Yang, M Alexiades, D Ezzeddine. Proc Natl Acad Sci U S A 1996
747
25



Self-formation of optic cups and storable stratified neural retina from human ESCs.
Tokushige Nakano, Satoshi Ando, Nozomu Takata, Masako Kawada, Keiko Muguruma, Kiyotoshi Sekiguchi, Koichi Saito, Shigenobu Yonemura, Mototsugu Eiraku, Yoshiki Sasai. Cell Stem Cell 2012
721
16

Cell fate determination in the vertebrate retina.
Erin A Bassett, Valerie A Wallace. Trends Neurosci 2012
157
15


Intrinsic control of mammalian retinogenesis.
Mengqing Xiang. Cell Mol Life Sci 2013
55
23

Timing and topography of cell genesis in the rat retina.
David H Rapaport, Lily L Wong, Eric D Wood, Douglas Yasumura, Matthew M LaVail. J Comp Neurol 2004
263
12

Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification.
Brian S Clark, Genevieve L Stein-O'Brien, Fion Shiau, Gabrielle H Cannon, Emily Davis-Marcisak, Thomas Sherman, Clayton P Santiago, Thanh V Hoang, Fatemeh Rajaii, Rebecca E James-Esposito,[...]. Neuron 2019
95
12

Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development.
Akihiro Nishida, Akiko Furukawa, Chieko Koike, Yasuo Tano, Shinichi Aizawa, Isao Matsuo, Takahisa Furukawa. Nat Neurosci 2003
398
11

Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors.
Shengguo Li, Zeqian Mo, Xuejie Yang, Sandy M Price, Michael M Shen, Mengqing Xiang. Neuron 2004
177
11

Math5 is required for retinal ganglion cell and optic nerve formation.
N L Brown, S Patel, J Brzezinski, T Glaser. Development 2001
363
11

Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina.
Anand Swaroop, Douglas Kim, Douglas Forrest. Nat Rev Neurosci 2010
319
11

Self-organizing optic-cup morphogenesis in three-dimensional culture.
Mototsugu Eiraku, Nozomu Takata, Hiroki Ishibashi, Masako Kawada, Eriko Sakakura, Satoru Okuda, Kiyotoshi Sekiguchi, Taiji Adachi, Yoshiki Sasai. Nature 2011
11

Molecular Anatomy of the Developing Human Retina.
Akina Hoshino, Rinki Ratnapriya, Matthew J Brooks, Vijender Chaitankar, Matthew S Wilken, Chi Zhang, Margaret R Starostik, Linn Gieser, Anna La Torre, Mario Nishio,[...]. Dev Cell 2017
89
12

Requirement for math5 in the development of retinal ganglion cells.
S W Wang, B S Kim, K Ding, H Wang, D Sun, R L Johnson, W H Klein, L Gan. Genes Dev 2001
360
10

Generating neuronal diversity in the retina: one for nearly all.
Till Marquardt, Peter Gruss. Trends Neurosci 2002
272
10

From progenitors to differentiated cells in the vertebrate retina.
Michalis Agathocleous, William A Harris. Annu Rev Cell Dev Biol 2009
167
10


Conserved microRNA pathway regulates developmental timing of retinal neurogenesis.
Anna La Torre, Sean Georgi, Thomas A Reh. Proc Natl Acad Sci U S A 2013
135
10

Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog.
J N Kay, K C Finger-Baier, T Roeser, W Staub, H Baier. Neuron 2001
294
10

Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs.
Xiufeng Zhong, Christian Gutierrez, Tian Xue, Christopher Hampton, M Natalia Vergara, Li-Hui Cao, Ann Peters, Tea Soon Park, Elias T Zambidis, Jason S Meyer,[...]. Nat Commun 2014
397
10

POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells.
L Gan, M Xiang, L Zhou, D S Wagner, W H Klein, J Nathans. Proc Natl Acad Sci U S A 1996
263
9

Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells.
Ying Jiang, Qian Ding, Xiaoling Xie, Richard T Libby, Veronique Lefebvre, Lin Gan. J Biol Chem 2013
70
12

Ptf1a determines horizontal and amacrine cell fates during mouse retinal development.
Yoshio Fujitani, Shuko Fujitani, Huijun Luo, Feng Qiu, Jared Burlison, Qiaoming Long, Yoshiya Kawaguchi, Helena Edlund, Raymond J MacDonald, Takahisa Furukawa,[...]. Development 2006
165
9

Notch 1 inhibits photoreceptor production in the developing mammalian retina.
Ashutosh P Jadhav, Heather A Mason, Constance L Cepko. Development 2006
158
9

Nrl is required for rod photoreceptor development.
A J Mears, M Kondo, P K Swain, Y Takada, R A Bush, T L Saunders, P A Sieving, A Swaroop. Nat Genet 2001
652
9

Efficient generation of retinal progenitor cells from human embryonic stem cells.
Deepak A Lamba, Mike O Karl, Carol B Ware, Thomas A Reh. Proc Natl Acad Sci U S A 2006
448
9

Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Karthik Shekhar, Sylvain W Lapan, Irene E Whitney, Nicholas M Tran, Evan Z Macosko, Monika Kowalczyk, Xian Adiconis, Joshua Z Levin, James Nemesh, Melissa Goldman,[...]. Cell 2016
448
9

A conserved regulatory logic controls temporal identity in mouse neural progenitors.
Pierre Mattar, Johan Ericson, Seth Blackshaw, Michel Cayouette. Neuron 2015
65
13

Influences on neural lineage and mode of division in the zebrafish retina in vivo.
Lucia Poggi, Marta Vitorino, Ichiro Masai, William A Harris. J Cell Biol 2005
128
8

Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property.
Ashutosh P Jadhav, Seo-Hee Cho, Constance L Cepko. Proc Natl Acad Sci U S A 2006
97
8

The Rx homeobox gene is essential for vertebrate eye development.
P H Mathers, A Grinberg, K A Mahon, M Jamrich. Nature 1997
529
8

ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells.
Ling Pan, Min Deng, Xiaoling Xie, Lin Gan. Development 2008
127
8

Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina.
Orly Yaron, Chen Farhy, Till Marquardt, Meredithe Applebury, Ruth Ashery-Padan. Development 2006
130
8

The neuronal organization of the retina.
Richard H Masland. Neuron 2012
411
8

Math5 determines the competence state of retinal ganglion cell progenitors.
Zhiyong Yang, Kan Ding, Ling Pan, Min Deng, Lin Gan. Dev Biol 2003
197
8

Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue.
Atsushi Kuwahara, Chikafumi Ozone, Tokushige Nakano, Koichi Saito, Mototsugu Eiraku, Yoshiki Sasai. Nat Commun 2015
133
8



Retinal cell fate determination and bHLH factors.
Jun Hatakeyama, Ryoichiro Kageyama. Semin Cell Dev Biol 2004
191
8

Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina.
Amy N Riesenberg, Zhenyi Liu, Raphael Kopan, Nadean L Brown. J Neurosci 2009
73
10


Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck,[...]. Cell 2015
8

Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors.
Mark M Emerson, Natalia Surzenko, Jillian J Goetz, Jeffrey Trimarchi, Constance L Cepko. Dev Cell 2013
64
12

Eye morphogenesis and patterning of the optic vesicle.
Sabine Fuhrmann. Curr Top Dev Biol 2010
211
8

Modeling early retinal development with human embryonic and induced pluripotent stem cells.
Jason S Meyer, Rebecca L Shearer, Elizabeth E Capowski, Lynda S Wright, Kyle A Wallace, Erin L McMillan, Su-Chun Zhang, David M Gamm. Proc Natl Acad Sci U S A 2009
382
8

Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2.
Xiuqian Mu, Xueyao Fu, Phillip D Beremand, Terry L Thomas, William H Klein. Proc Natl Acad Sci U S A 2008
103
7

Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development.
Darshan Sapkota, Hemabindu Chintala, Fuguo Wu, Steven J Fliesler, Zihua Hu, Xiuqian Mu. Proc Natl Acad Sci U S A 2014
51
13



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.