A citation-based method for searching scientific literature

Lee M Miller, Monty A Escabí, Heather L Read, Christoph E Schreiner. J Neurophysiol 2002
Times Cited: 217







List of co-cited articles
1016 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity



Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.
Monty A Escabi, Christoph E Schreiner. J Neurosci 2002
142
31


Optimizing sound features for cortical neurons.
R C deCharms, D T Blake, M M Merzenich. Science 1998
306
26

Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds.
Sarah M N Woolley, Thane E Fremouw, Anne Hsu, Frédéric E Theunissen. Nat Neurosci 2005
173
24

Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex.
Jonathan Fritz, Shihab Shamma, Mounya Elhilali, David Klein. Nat Neurosci 2003
487
24

Linearity of cortical receptive fields measured with natural sounds.
Christian K Machens, Michael S Wehr, Anthony M Zador. J Neurosci 2004
192
21


Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
D J Klein, D A Depireux, J Z Simon, S A Shamma. J Comput Neurosci 2000
152
21

Modulation spectra of natural sounds and ethological theories of auditory processing.
Nandini C Singh, Frédéric E Theunissen. J Acoust Soc Am 2003
255
21

Multiresolution spectrotemporal analysis of complex sounds.
Taishih Chi, Powen Ru, Shihab A Shamma. J Acoust Soc Am 2005
188
21


The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
G Björn Christianson, Maneesh Sahani, Jennifer F Linden. J Neurosci 2008
82
23

Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
Jennifer F Linden, Robert C Liu, Maneesh Sahani, Christoph E Schreiner, Michael M Merzenich. J Neurophysiol 2003
153
17


The modulation transfer function for speech intelligibility.
Taffeta M Elliott, Frédéric E Theunissen. PLoS Comput Biol 2009
173
17

Neural processing of amplitude-modulated sounds.
P X Joris, C E Schreiner, A Rees. Physiol Rev 2004
502
17

Cooperative nonlinearities in auditory cortical neurons.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. Neuron 2008
86
19

Sound representation methods for spectro-temporal receptive field estimation.
Patrick Gill, Junli Zhang, Sarah M N Woolley, Thane Fremouw, Frédéric E Theunissen. J Comput Neurosci 2006
59
27

Spectro-temporal modulation transfer functions and speech intelligibility.
T Chi, Y Gao, M C Guyton, P Ru, S Shamma. J Acoust Soc Am 1999
153
15


Neural population coding of sound level adapts to stimulus statistics.
Isabel Dean, Nicol S Harper, David McAlpine. Nat Neurosci 2005
302
14

Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent.
Boris Gourévitch, Arnaud Noreña, Gregory Shaw, Jos J Eggermont. Cereb Cortex 2009
38
34


Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.
F E Theunissen, S V David, N C Singh, A Hsu, W E Vinje, J L Gallant. Network 2001
214
13


Neural modulation tuning characteristics scale to efficiently encode natural sound statistics.
Francisco A Rodríguez, Chen Chen, Heather L Read, Monty A Escabí. J Neurosci 2010
46
26

Thalamocortical transformation of responses to complex auditory stimuli.
O Creutzfeldt, F C Hellweg, C Schreiner. Exp Brain Res 1980
277
12



Spectral and temporal modulation tradeoff in the inferior colliculus.
Francisco A Rodríguez, Heather L Read, Monty A Escabí. J Neurophysiol 2010
50
24

Contrast gain control in auditory cortex.
Neil C Rabinowitz, Ben D B Willmore, Jan W H Schnupp, Andrew J King. Neuron 2011
130
12

A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
Ana Calabrese, Joseph W Schumacher, David M Schneider, Liam Paninski, Sarah M N Woolley. PLoS One 2011
68
17

Hierarchical representations in the auditory cortex.
Tatyana O Sharpee, Craig A Atencio, Christoph E Schreiner. Curr Opin Neurobiol 2011
47
25

Integration over multiple timescales in primary auditory cortex.
Stephen V David, Shihab A Shamma. J Neurosci 2013
40
30

Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
Anqi Qiu, Christoph E Schreiner, Monty A Escabí. J Neurophysiol 2003
50
22

Analyzing neural responses to natural signals: maximally informative dimensions.
Tatyana Sharpee, Nicole C Rust, William Bialek. Neural Comput 2004
178
11


Sparse codes for speech predict spectrotemporal receptive fields in the inferior colliculus.
Nicole L Carlson, Vivienne L Ming, Michael Robert Deweese. PLoS Comput Biol 2012
33
33

Functional convergence of response properties in the auditory thalamocortical system.
L M Miller, M A Escabí, H L Read, C E Schreiner. Neuron 2001
149
11



Functional groups in the avian auditory system.
Sarah M N Woolley, Patrick R Gill, Thane Fremouw, Frédéric E Theunissen. J Neurosci 2009
53
18


Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex.
Nima Mesgarani, Stephen V David, Jonathan B Fritz, Shihab A Shamma. J Neurophysiol 2009
78
12

Reconstructing speech from human auditory cortex.
Brian N Pasley, Stephen V David, Nima Mesgarani, Adeen Flinker, Shihab A Shamma, Nathan E Crone, Robert T Knight, Edward F Chang. PLoS Biol 2012
258
10

Receptive field dimensionality increases from the auditory midbrain to cortex.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. J Neurophysiol 2012
38
26

Spectrotemporal contrast kernels for neurons in primary auditory cortex.
Neil C Rabinowitz, Ben D B Willmore, Jan W H Schnupp, Andrew J King. J Neurosci 2012
42
23


Estimating sparse spectro-temporal receptive fields with natural stimuli.
Stephen V David, Nima Mesgarani, Shihab A Shamma. Network 2007
71
12


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.