A citation-based method for searching scientific literature

Monty A Escabi, Christoph E Schreiner. J Neurosci 2002
Times Cited: 142







List of co-cited articles
913 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity



Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.
Lee M Miller, Monty A Escabí, Heather L Read, Christoph E Schreiner. J Neurophysiol 2002
217
42

Optimizing sound features for cortical neurons.
R C deCharms, D T Blake, M M Merzenich. Science 1998
306
38


Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
D J Klein, D A Depireux, J Z Simon, S A Shamma. J Comput Neurosci 2000
152
32

Linearity of cortical receptive fields measured with natural sounds.
Christian K Machens, Michael S Wehr, Anthony M Zador. J Neurosci 2004
192
29

Cooperative nonlinearities in auditory cortical neurons.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. Neuron 2008
86
33

The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
G Björn Christianson, Maneesh Sahani, Jennifer F Linden. J Neurosci 2008
82
32


Neural processing of amplitude-modulated sounds.
P X Joris, C E Schreiner, A Rees. Physiol Rev 2004
502
26

Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex.
Jonathan Fritz, Shihab Shamma, Mounya Elhilali, David Klein. Nat Neurosci 2003
487
26

Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds.
Sarah M N Woolley, Thane E Fremouw, Anne Hsu, Frédéric E Theunissen. Nat Neurosci 2005
173
24


Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
Jennifer F Linden, Robert C Liu, Maneesh Sahani, Christoph E Schreiner, Michael M Merzenich. J Neurophysiol 2003
153
22

Analyzing neural responses to natural signals: maximally informative dimensions.
Tatyana Sharpee, Nicole C Rust, William Bialek. Neural Comput 2004
178
22

Modulation spectra of natural sounds and ethological theories of auditory processing.
Nandini C Singh, Frédéric E Theunissen. J Acoust Soc Am 2003
255
22

Dynamic spectrotemporal feature selectivity in the auditory midbrain.
Nicholas A Lesica, Benedikt Grothe. J Neurosci 2008
47
40




Spectral and temporal modulation tradeoff in the inferior colliculus.
Francisco A Rodríguez, Heather L Read, Monty A Escabí. J Neurophysiol 2010
50
36

Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
Anqi Qiu, Christoph E Schreiner, Monty A Escabí. J Neurophysiol 2003
50
34

Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus.
Monty A Escabí, Lee M Miller, Heather L Read, Christoph E Schreiner. J Neurosci 2003
88
19

Sound representation methods for spectro-temporal receptive field estimation.
Patrick Gill, Junli Zhang, Sarah M N Woolley, Thane Fremouw, Frédéric E Theunissen. J Comput Neurosci 2006
59
28

Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.
F E Theunissen, S V David, N C Singh, A Hsu, W E Vinje, J L Gallant. Network 2001
214
17

Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent.
Boris Gourévitch, Arnaud Noreña, Gregory Shaw, Jos J Eggermont. Cereb Cortex 2009
38
44


A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
Ana Calabrese, Joseph W Schumacher, David M Schneider, Liam Paninski, Sarah M N Woolley. PLoS One 2011
68
23

Receptive field dimensionality increases from the auditory midbrain to cortex.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. J Neurophysiol 2012
38
39

Linear processing of spatial cues in primary auditory cortex.
J W Schnupp, T D Mrsic-Flogel, A J King. Nature 2001
95
14


Spectro-temporal modulation transfer functions and speech intelligibility.
T Chi, Y Gao, M C Guyton, P Ru, S Shamma. J Acoust Soc Am 1999
153
14

Hierarchical computation in the canonical auditory cortical circuit.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. Proc Natl Acad Sci U S A 2009
70
20

Neural modulation tuning characteristics scale to efficiently encode natural sound statistics.
Francisco A Rodríguez, Chen Chen, Heather L Read, Monty A Escabí. J Neurosci 2010
46
30

Spike-triggered neural characterization.
Odelia Schwartz, Jonathan W Pillow, Nicole C Rust, Eero P Simoncelli. J Vis 2006
238
13

Feature analysis of natural sounds in the songbird auditory forebrain.
K Sen, F E Theunissen, A J Doupe. J Neurophysiol 2001
162
13


The contribution of spike threshold to acoustic feature selectivity, spike information content, and information throughput.
Monty A Escabí, Reza Nassiri, Lee M Miller, Christoph E Schreiner, Heather L Read. J Neurosci 2005
29
44

Contrast gain control in auditory cortex.
Neil C Rabinowitz, Ben D B Willmore, Jan W H Schnupp, Andrew J King. Neuron 2011
130
13





Hierarchical representations in the auditory cortex.
Tatyana O Sharpee, Craig A Atencio, Christoph E Schreiner. Curr Opin Neurobiol 2011
47
25


Changes of AI receptive fields with sound density.
David T Blake, Michael M Merzenich. J Neurophysiol 2002
64
17

Reduction of information redundancy in the ascending auditory pathway.
Gal Chechik, Michael J Anderson, Omer Bar-Yosef, Eric D Young, Naftali Tishby, Israel Nelken. Neuron 2006
155
11

Reverse-correlation methods in auditory research.
J J Eggermont, P M Johannesma, A M Aertsen. Q Rev Biophys 1983
145
11

Integration over multiple timescales in primary auditory cortex.
Stephen V David, Shihab A Shamma. J Neurosci 2013
40
27



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.