A citation-based method for searching scientific literature

Robert Hindges, Todd McLaughlin, Nicolas Genoud, Mark Henkemeyer, Dennis D M O'Leary. Neuron 2002
Times Cited: 238







List of co-cited articles
1096 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping.
D A Feldheim, Y I Kim, A D Bergemann, J Frisén, M Barbacid, J G Flanagan. Neuron 2000
355
36

Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping.
Adam M Schmitt, Jun Shi, Alex M Wolf, Chin-Chun Lu, Leslie A King, Yimin Zou. Nature 2006
209
36


Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system.
J Frisén, P A Yates, T McLaughlin, G C Friedman, D D O'Leary, M Barbacid. Neuron 1998
347
32

Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm.
Scott E Williams, Fanny Mann, Lynda Erskine, Takeshi Sakurai, Shiniu Wei, Derrick J Rossi, Nicholas W Gale, Christine E Holt, Carol A Mason, Mark Henkemeyer. Neuron 2003
239
32

Molecular gradients and development of retinotopic maps.
Todd McLaughlin, Dennis D M O'Leary. Annu Rev Neurosci 2005
303
30


Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system.
Tahira Rashid, A Louise Upton, Aida Blentic, Thomas Ciossek, Bernd Knöll, Ian D Thompson, Uwe Drescher. Neuron 2005
123
27

Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling.
A Brown, P A Yates, P Burrola, D Ortuño, A Vaidya, T M Jessell, S L Pfaff, D D O'Leary, G Lemke. Cell 2000
259
25


Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.
Todd McLaughlin, Christine L Torborg, Marla B Feller, Dennis D M O'Leary. Neuron 2003
288
23


p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping.
Yoo-Shick Lim, Todd McLaughlin, Tsung-Chang Sung, Alicia Santiago, Kuo-Fen Lee, Dennis D M O'Leary. Neuron 2008
149
21



Topographic guidance labels in a sensory projection to the forebrain.
D A Feldheim, P Vanderhaeghen, M J Hansen, J Frisén, Q Lu, M Barbacid, J G Flanagan. Neuron 1998
223
20

Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition.
David A Feldheim, Dennis D M O'Leary. Cold Spring Harb Perspect Biol 2010
131
20

Bidirectional Eph-ephrin signaling during axon guidance.
Joaquim Egea, Rüdiger Klein. Trends Cell Biol 2007
278
19


Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons.
M R Hornberger, D Dütting, T Ciossek, T Yamada, C Handwerker, S Lang, F Weth, J Huf, R Wessel, C Logan,[...]. Neuron 1999
295
19

A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis.
Katharine J M Marler, Elena Becker-Barroso, Albert Martínez, Marta Llovera, Corinna Wentzel, Subathra Poopalasundaram, Robert Hindges, Eduardo Soriano, Joan Comella, Uwe Drescher. J Neurosci 2008
115
19


Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling.
Juha-Pekka Himanen, Michael J Chumley, Martin Lackmann, Chen Li, William A Barton, Phillip D Jeffrey, Christopher Vearing, Detlef Geleick, David A Feldheim, Andrew W Boyd,[...]. Nat Neurosci 2004
343
18

Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis.
N W Gale, S J Holland, D M Valenzuela, A Flenniken, L Pan, T E Ryan, M Henkemeyer, K Strebhardt, H Hirai, D G Wilkinson,[...]. Neuron 1996
726
18

Loss-of-function analysis of EphA receptors in retinotectal mapping.
David A Feldheim, Masaru Nakamoto, Miriam Osterfield, Nicholas W Gale, Thomas M DeChiara, Rajat Rohatgi, George D Yancopoulos, John G Flanagan. J Neurosci 2004
113
17

Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
Anand R Chandrasekaran, Daniel T Plas, Ernesto Gonzalez, Michael C Crair. J Neurosci 2005
126
17

A relative signalling model for the formation of a topographic neural map.
Michaël Reber, Patrick Burrola, Greg Lemke. Nature 2004
90
18

Zic2 patterns binocular vision by specifying the uncrossed retinal projection.
Eloísa Herrera, Lucia Brown, Jun Aruga, Rivka A Rachel, Gül Dolen, Katsuhiko Mikoshiba, Stephen Brown, Carol A Mason. Cell 2003
182
17

Silencing of EphA3 through a cis interaction with ephrinA5.
Ricardo F Carvalho, Martin Beutler, Katharine J M Marler, Bernd Knöll, Elena Becker-Barroso, R Heintzmann, Tony Ng, Uwe Drescher. Nat Neurosci 2006
142
16


Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo.
M Nakamoto, H J Cheng, G C Friedman, T McLaughlin, M J Hansen, C H Yoon, D D O'Leary, J G Flanagan. Cell 1996
358
15


Retinal input instructs alignment of visual topographic maps.
Jason W Triplett, Melinda T Owens, Jena Yamada, Greg Lemke, Jianhua Cang, Michael P Stryker, David A Feldheim. Cell 2009
71
21

Critical roles for EphB and ephrin-B bidirectional signalling in retinocollicular mapping.
Sonal Thakar, George Chenaux, Mark Henkemeyer. Nat Commun 2011
28
53

Regulation of axial patterning of the retina and its topographic mapping in the brain.
Todd McLaughlin, Robert Hindges, Dennis D M O'Leary. Curr Opin Neurobiol 2003
168
14

Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
J E Braisted, T McLaughlin, H U Wang, G C Friedman, D J Anderson, D D O'leary. Dev Biol 1997
129
14

Retinotopic order in the absence of axon competition.
Nathan J Gosse, Linda M Nevin, Herwig Baier. Nature 2008
61
22

Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus.
Jianhua Cang, Lupeng Wang, Michael P Stryker, David A Feldheim. J Neurosci 2008
71
19


Nuk controls pathfinding of commissural axons in the mammalian central nervous system.
M Henkemeyer, D Orioli, J T Henderson, T M Saxton, J Roder, T Pawson, R Klein. Cell 1996
451
13

Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm.
S Nakagawa, C Brennan, K G Johnson, D Shewan, W A Harris, C E Holt. Neuron 2000
145
13

Pretarget sorting of retinocollicular axons in the mouse.
Daniel T Plas, Joshua E Lopez, Michael C Crair. J Comp Neurol 2005
44
29

The ephrins and Eph receptors in neural development.
J G Flanagan, P Vanderhaeghen. Annu Rev Neurosci 1998
912
13

Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping.
Cory Pfeiffenberger, Tyler Cutforth, Georgia Woods, Jena Yamada, René C Rentería, David R Copenhagen, John G Flanagan, David A Feldheim. Nat Neurosci 2005
140
12

Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo.
Byung Kook Lim, Naoto Matsuda, Mu-ming Poo. Nat Neurosci 2008
88
12

Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision.
Catherine A Leamey, Sam Merlin, Paul Lattouf, Atomu Sawatari, Xiaohong Zhou, Natasha Demel, Kelly A Glendining, Toshitaka Oohashi, Mriganka Sur, Reinhard Fässler. PLoS Biol 2007
102
11

Bone morphogenetic proteins, eye patterning, and retinocollicular map formation in the mouse.
Daniel T Plas, Onkar S Dhande, Joshua E Lopez, Deepa Murali, Christina Thaller, Mark Henkemeyer, Yasuhide Furuta, Paul Overbeek, Michael C Crair. J Neurosci 2008
27
40

Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms.
Cristina García-Frigola, Maria Isabel Carreres, Celia Vegar, Carol Mason, Eloísa Herrera. Development 2008
73
15

Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.
Ben K Stafford, Alexander Sher, Alan M Litke, David A Feldheim. Neuron 2009
89
12



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.