A citation-based method for searching scientific literature

Benedetta Dorigo, Thomas Schalch, Kerstin Bystricky, Timothy J Richmond. J Mol Biol 2003
Times Cited: 372







List of co-cited articles
1120 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Crystal structure of the nucleosome core particle at 2.8 A resolution.
K Luger, A W Mäder, R K Richmond, D F Sargent, T J Richmond. Nature 1997
69

Histone H4-K16 acetylation controls chromatin structure and protein interactions.
Michael Shogren-Knaak, Haruhiko Ishii, Jian-Min Sun, Michael J Pazin, James R Davie, Craig L Peterson. Science 2006
45


Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
Feng Song, Ping Chen, Dapeng Sun, Mingzhu Wang, Liping Dong, Dan Liang, Rui-Ming Xu, Ping Zhu, Guohong Li. Science 2014
338
33

Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution.
Curt A Davey, David F Sargent, Karolin Luger, Armin W Maeder, Timothy J Richmond. J Mol Biol 2002
966
30

X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
Thomas Schalch, Sylwia Duda, David F Sargent, Timothy J Richmond. Nature 2005
506
29

Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.
Maria Aurelia Ricci, Carlo Manzo, María Filomena García-Parajo, Melike Lakadamyali, Maria Pia Cosma. Cell 2015
308
23

Nucleosome arrays reveal the two-start organization of the chromatin fiber.
Benedetta Dorigo, Thomas Schalch, Alexandra Kulangara, Sylwia Duda, Rasmus R Schroeder, Timothy J Richmond. Science 2004
375
22


Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers.
Kazuhiro Maeshima, Ryan Rogge, Sachiko Tamura, Yasumasa Joti, Takaaki Hikima, Heather Szerlong, Christine Krause, Jake Herman, Erik Seidel, Jennifer DeLuca,[...]. EMBO J 2016
94
22

The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association.
Abdollah Allahverdi, Renliang Yang, Nikolay Korolev, Yanping Fan, Curt A Davey, Chuan-Fa Liu, Lars Nordenskiöld. Nucleic Acids Res 2011
131
21

New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
Karolin Luger, Mekonnen L Dechassa, David J Tremethick. Nat Rev Mol Cell Biol 2012
388
20

Solenoidal model for superstructure in chromatin.
J T Finch, A Klug. Proc Natl Acad Sci U S A 1976
20

ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells.
Horng D Ou, Sébastien Phan, Thomas J Deerinck, Andrea Thor, Mark H Ellisman, Clodagh C O'Shea. Science 2017
361
19

Reconstitution of nucleosome core particles from recombinant histones and DNA.
Pamela N Dyer, Raji S Edayathumangalam, Cindy L White, Yunhe Bao, Srinivas Chakravarthy, Uma M Muthurajan, Karolin Luger. Methods Enzymol 2004
491
18

EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
Philip J J Robinson, Louise Fairall, Van A T Huynh, Daniela Rhodes. Proc Natl Acad Sci U S A 2006
307
18


UCSF Chimera--a visualization system for exploratory research and analysis.
Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch, Daniel M Greenblatt, Elaine C Meng, Thomas E Ferrin. J Comput Chem 2004
17



Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure.
Yoshinori Nishino, Mikhail Eltsov, Yasumasa Joti, Kazuki Ito, Hideaki Takata, Yukio Takahashi, Saera Hihara, Achilleas S Frangakis, Naoko Imamoto, Tetsuya Ishikawa,[...]. EMBO J 2012
194
16

Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.
Mikhail Eltsov, Kirsty M Maclellan, Kazuhiro Maeshima, Achilleas S Frangakis, Jacques Dubochet. Proc Natl Acad Sci U S A 2008
229
16

Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C.
Tsung-Han S Hsieh, Assaf Weiner, Bryan Lajoie, Job Dekker, Nir Friedman, Oliver J Rando. Cell 2015
280
15

Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
Andrew Routh, Sara Sandin, Daniela Rhodes. Proc Natl Acad Sci U S A 2008
232
15

The role of the nucleosome acidic patch in modulating higher order chromatin structure.
Anna A Kalashnikova, Mary E Porter-Goff, Uma M Muthurajan, Karolin Luger, Jeffrey C Hansen. J R Soc Interface 2013
134
15

Regulation of chromatin by histone modifications.
Andrew J Bannister, Tony Kouzarides. Cell Res 2011
15

Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length.
Christopher L Woodcock, Arthur I Skoultchi, Yuhong Fan. Chromosome Res 2006
301
15

30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction.
Philip J J Robinson, Woojin An, Andrew Routh, Fabrizio Martino, Lynda Chapman, Robert G Roeder, Daniela Rhodes. J Mol Biol 2008
218
14


Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres.
Eden Fussner, Mike Strauss, Ugljesa Djuric, Ren Li, Kashif Ahmed, Michael Hart, James Ellis, David P Bazett-Jones. EMBO Rep 2012
99
13

Chromatin as dynamic 10-nm fibers.
Kazuhiro Maeshima, Ryosuke Imai, Sachiko Tamura, Tadasu Nozaki. Chromosoma 2014
108
13


Nucleosome structure and function.
Robert K McGinty, Song Tan. Chem Rev 2015
209
13

Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging.
Tadasu Nozaki, Ryosuke Imai, Mai Tanbo, Ryosuke Nagashima, Sachiko Tamura, Tomomi Tani, Yasumasa Joti, Masaru Tomita, Kayo Hibino, Masato T Kanemaki,[...]. Mol Cell 2017
176
13

Chromosomes without a 30-nm chromatin fiber.
Yasumasa Joti, Takaaki Hikima, Yoshinori Nishino, Fukumi Kamada, Saera Hihara, Hideaki Takata, Tetsuya Ishikawa, Kazuhiro Maeshima. Nucleus 2012
88
13

Rapid spontaneous accessibility of nucleosomal DNA.
Gu Li, Marcia Levitus, Carlos Bustamante, Jonathan Widom. Nat Struct Mol Biol 2005
444
12


Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
Rosana Collepardo-Guevara, Tamar Schlick. Proc Natl Acad Sci U S A 2014
83
14

Histone H3 and H4 N-terminal tails in nucleosome arrays at cellular concentrations probed by magic angle spinning NMR spectroscopy.
Min Gao, Philippe S Nadaud, Morgan W Bernier, Justin A North, P Chris Hammel, Michael G Poirier, Christopher P Jaroniec. J Am Chem Soc 2013
48
25


Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu, Bing Ren. Nature 2012
12

Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
Jan Bednar, Isabel Garcia-Saez, Ramachandran Boopathi, Amber R Cutter, Gabor Papai, Anna Reymer, Sajad H Syed, Imtiaz Nisar Lone, Ognyan Tonchev, Corinne Crucifix,[...]. Mol Cell 2017
119
12

Dynamics and function of compact nucleosome arrays.
Michael G Poirier, Eugene Oh, Hannah S Tims, Jonathan Widom. Nat Struct Mol Biol 2009
91
12

Structural Mechanisms of Nucleosome Recognition by Linker Histones.
Bing-Rui Zhou, Jiansheng Jiang, Hanqiao Feng, Rodolfo Ghirlando, T Sam Xiao, Yawen Bai. Mol Cell 2015
128
11


Chromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study.
Rosana Collepardo-Guevara, Guillem Portella, Michele Vendruscolo, Daan Frenkel, Tamar Schlick, Modesto Orozco. J Am Chem Soc 2015
78
14

Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome.
Bing-Rui Zhou, Hanqiao Feng, Rodolfo Ghirlando, Hidenori Kato, James Gruschus, Yawen Bai. J Mol Biol 2012
50
22



Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping.
Viviana I Risca, Sarah K Denny, Aaron F Straight, William J Greenleaf. Nature 2017
89
12


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.