A citation-based method for searching scientific literature


List of co-cited articles
284 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity



Data Resource Profile: Clinical Practice Research Datalink (CPRD).
Emily Herrett, Arlene M Gallagher, Krishnan Bhaskaran, Harriet Forbes, Rohini Mathur, Tjeerd van Staa, Liam Smeeth. Int J Epidemiol 2015
15

Immortal time bias in pharmaco-epidemiology.
Samy Suissa. Am J Epidemiol 2008
975
12

Prevalent new-user cohort designs for comparative drug effect studies by time-conditional propensity scores.
Samy Suissa, Erica E M Moodie, Sophie Dell'Aniello. Pharmacoepidemiol Drug Saf 2017
89
12



Active-comparator design and new-user design in observational studies.
Kazuki Yoshida, Daniel H Solomon, Seoyoung C Kim. Nat Rev Rheumatol 2015
132
9

Variable selection for propensity score models.
M Alan Brookhart, Sebastian Schneeweiss, Kenneth J Rothman, Robert J Glynn, Jerry Avorn, Til Stürmer. Am J Epidemiol 2006
8

The incident user design in comparative effectiveness research.
Eric S Johnson, Barbara A Bartman, Becky A Briesacher, Neil S Fleming, Tobias Gerhard, Cynthia J Kornegay, Parivash Nourjah, Brian Sauer, Glen T Schumock, Art Sedrakyan,[...]. Pharmacoepidemiol Drug Saf 2013
131
8

High-dimensional propensity score adjustment in studies of treatment effects using health care claims data.
Sebastian Schneeweiss, Jeremy A Rassen, Robert J Glynn, Jerry Avorn, Helen Mogun, M Alan Brookhart. Epidemiology 2009
673
8


Propensity score methods for confounding control in nonexperimental research.
M Alan Brookhart, Richard Wyss, J Bradley Layton, Til Stürmer. Circ Cardiovasc Qual Outcomes 2013
316
8

Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses.
Miguel A Hernán, Brian C Sauer, Sonia Hernández-Díaz, Robert Platt, Ian Shrier. J Clin Epidemiol 2016
203
8

Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease.
Miguel A Hernán, Alvaro Alonso, Roger Logan, Francine Grodstein, Karin B Michels, Walter C Willett, Joann E Manson, James M Robins. Epidemiology 2008
472
7



Validation and validity of diagnoses in the General Practice Research Database: a systematic review.
Emily Herrett, Sara L Thomas, W Marieke Schoonen, Liam Smeeth, Andrew J Hall. Br J Clin Pharmacol 2010
806
6


Immortal time bias in observational studies of drug effects.
Samy Suissa. Pharmacoepidemiol Drug Saf 2007
329
6

Negative controls: a tool for detecting confounding and bias in observational studies.
Marc Lipsitch, Eric Tchetgen Tchetgen, Ted Cohen. Epidemiology 2010
576
6

One-to-many propensity score matching in cohort studies.
Jeremy A Rassen, Abhi A Shelat, Jessica Myers, Robert J Glynn, Kenneth J Rothman, Sebastian Schneeweiss. Pharmacoepidemiol Drug Saf 2012
258
5

Transparency and Reproducibility of Observational Cohort Studies Using Large Healthcare Databases.
S V Wang, P Verpillat, J A Rassen, A Patrick, E M Garry, D B Bartels. Clin Pharmacol Ther 2016
95
5

Metrics for covariate balance in cohort studies of causal effects.
Jessica M Franklin, Jeremy A Rassen, Diana Ackermann, Dorothee B Bartels, Sebastian Schneeweiss. Stat Med 2014
138
5

Marginal structural models as a tool for standardization.
Tosiya Sato, Yutaka Matsuyama. Epidemiology 2003
265
5

Marginal structural models and causal inference in epidemiology.
J M Robins, M A Hernán, B Brumback. Epidemiology 2000
5

A Propensity-score-based Fine Stratification Approach for Confounding Adjustment When Exposure Is Infrequent.
Rishi J Desai, Kenneth J Rothman, Brian T Bateman, Sonia Hernandez-Diaz, Krista F Huybrechts. Epidemiology 2017
100
5

Effects of adjusting for instrumental variables on bias and precision of effect estimates.
Jessica A Myers, Jeremy A Rassen, Joshua J Gagne, Krista F Huybrechts, Sebastian Schneeweiss, Kenneth J Rothman, Marshall M Joffe, Robert J Glynn. Am J Epidemiol 2011
143
5

The reporting of studies conducted using observational routinely collected health data statement for pharmacoepidemiology (RECORD-PE).
Sinéad M Langan, Sigrún Aj Schmidt, Kevin Wing, Vera Ehrenstein, Stuart G Nicholls, Kristian B Filion, Olaf Klungel, Irene Petersen, Henrik T Sorensen, William G Dixon,[...]. BMJ 2018
137
5


Using Real-World Data to Predict Findings of an Ongoing Phase IV Cardiovascular Outcome Trial: Cardiovascular Safety of Linagliptin Versus Glimepiride.
Elisabetta Patorno, Sebastian Schneeweiss, Chandrasekar Gopalakrishnan, David Martin, Jessica M Franklin. Diabetes Care 2019
44
11


Calendar time-specific propensity scores and comparative effectiveness research for stage III colon cancer chemotherapy.
Christina DeFilippo Mack, Robert J Glynn, M Alan Brookhart, William R Carpenter, Anne Marie Meyer, Robert S Sandler, Til Stürmer. Pharmacoepidemiol Drug Saf 2013
33
15


Sensitivity Analysis in Observational Research: Introducing the E-Value.
Tyler J VanderWeele, Peng Ding. Ann Intern Med 2017
4

Beyond the intention-to-treat in comparative effectiveness research.
Miguel A Hernán, Sonia Hernández-Díaz. Clin Trials 2012
239
4



Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals.
Stanley Xu, Colleen Ross, Marsha A Raebel, Susan Shetterly, Christopher Blanchette, David Smith. Value Health 2010
280
4

Constructing inverse probability weights for marginal structural models.
Stephen R Cole, Miguel A Hernán. Am J Epidemiol 2008
4

ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
Jonathan Ac Sterne, Miguel A Hernán, Barnaby C Reeves, Jelena Savović, Nancy D Berkman, Meera Viswanathan, David Henry, Douglas G Altman, Mohammed T Ansari, Isabelle Boutron,[...]. BMJ 2016
4

Real-World Evidence - What Is It and What Can It Tell Us?
Rachel E Sherman, Steven A Anderson, Gerald J Dal Pan, Gerry W Gray, Thomas Gross, Nina L Hunter, Lisa LaVange, Danica Marinac-Dabic, Peter W Marks, Melissa A Robb,[...]. N Engl J Med 2016
913
4

A combined comorbidity score predicted mortality in elderly patients better than existing scores.
Joshua J Gagne, Robert J Glynn, Jerry Avorn, Raisa Levin, Sebastian Schneeweiss. J Clin Epidemiol 2011
542
4


When and How Can Real World Data Analyses Substitute for Randomized Controlled Trials?
Jessica M Franklin, Sebastian Schneeweiss. Clin Pharmacol Ther 2017
119
4

Graphical Depiction of Longitudinal Study Designs in Health Care Databases.
Sebastian Schneeweiss, Jeremy A Rassen, Jeffrey S Brown, Kenneth J Rothman, Laura Happe, Peter Arlett, Gerald Dal Pan, Wim Goettsch, William Murk, Shirley V Wang. Ann Intern Med 2019
65
6

Adjusted survival curves with inverse probability weights.
Stephen R Cole, Miguel A Hernán. Comput Methods Programs Biomed 2004
489
4

Value of a national administrative database to guide public decisions: From the système national d'information interrégimes de l'Assurance Maladie (SNIIRAM) to the système national des données de santé (SNDS) in France.
P Tuppin, J Rudant, P Constantinou, C Gastaldi-Ménager, A Rachas, L de Roquefeuil, G Maura, H Caillol, A Tajahmady, J Coste,[...]. Rev Epidemiol Sante Publique 2017
282
4

Emulating Randomized Clinical Trials With Nonrandomized Real-World Evidence Studies: First Results From the RCT DUPLICATE Initiative.
Jessica M Franklin, Elisabetta Patorno, Rishi J Desai, Robert J Glynn, David Martin, Kenneth Quinto, Ajinkya Pawar, Lily G Bessette, Hemin Lee, Elizabeth M Garry,[...]. Circulation 2021
55
7

Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.
Hude Quan, Vijaya Sundararajan, Patricia Halfon, Andrew Fong, Bernard Burnand, Jean-Christophe Luthi, L Duncan Saunders, Cynthia A Beck, Thomas E Feasby, William A Ghali. Med Care 2005
4

Number needed to treat is incorrect without proper time-related considerations.
Daniel Suissa, Paul Brassard, Brielan Smiechowski, Samy Suissa. J Clin Epidemiol 2012
54
7


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.