A citation-based method for searching scientific literature

Christopher E Pearson, Kerrie Nichol Edamura, John D Cleary. Nat Rev Genet 2005
Times Cited: 604







List of co-cited articles
927 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity




Trinucleotide repeat disorders.
Harry T Orr, Huda Y Zoghbi. Annu Rev Neurosci 2007
957
19

Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.
Mariely DeJesus-Hernandez, Ian R Mackenzie, Bradley F Boeve, Adam L Boxer, Matt Baker, Nicola J Rutherford, Alexandra M Nicholson, NiCole A Finch, Heather Flynn, Jennifer Adamson,[...]. Neuron 2011
16



Non-ATG-initiated translation directed by microsatellite expansions.
Tao Zu, Brian Gibbens, Noelle S Doty, Mário Gomes-Pereira, Aline Huguet, Matthew D Stone, Jamie Margolis, Mark Peterson, Todd W Markowski, Melissa A C Ingram,[...]. Proc Natl Acad Sci U S A 2011
521
12

Repeat instability during DNA repair: Insights from model systems.
Karen Usdin, Nealia C M House, Catherine H Freudenreich. Crit Rev Biochem Mol Biol 2015
95
12


Repeat instability as the basis for human diseases and as a potential target for therapy.
Arturo López Castel, John D Cleary, Christopher E Pearson. Nat Rev Mol Cell Biol 2010
288
12

A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.
Alan E Renton, Elisa Majounie, Adrian Waite, Javier Simón-Sánchez, Sara Rollinson, J Raphael Gibbs, Jennifer C Schymick, Hannu Laaksovirta, John C van Swieten, Liisa Myllykangas,[...]. Neuron 2011
11

Repeat expansion disease: progress and puzzles in disease pathogenesis.
Albert R La Spada, J Paul Taylor. Nat Rev Genet 2010
283
11

Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion.
V Campuzano, L Montermini, M D Moltò, L Pianese, M Cossée, F Cavalcanti, E Monros, F Rodius, F Duclos, A Monticelli,[...]. Science 1996
11

Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.
A J Verkerk, M Pieretti, J S Sutcliffe, Y H Fu, D P Kuhl, A Pizzuti, O Reiner, S Richards, M F Victoria, F P Zhang. Cell 1991
11

Trinucleotide repeats that expand in human disease form hairpin structures in vitro.
A M Gacy, G Goellner, N Juranić, S Macura, C T McMurray. Cell 1995
461
11

Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9.
C L Liquori, K Ricker, M L Moseley, J F Jacobsen, W Kress, S L Naylor, J W Day, L P Ranum. Science 2001
806
10


Disease-associated repeat instability and mismatch repair.
Monika H M Schmidt, Christopher E Pearson. DNA Repair (Amst) 2016
113
10




Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset.
Meera Swami, Audrey E Hendricks, Tammy Gillis, Tiffany Massood, Jayalakshmi Mysore, Richard H Myers, Vanessa C Wheeler. Hum Mol Genet 2009
155
9

MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
Stéphanie Tomé, Kevin Manley, Jodie P Simard, Greg W Clark, Meghan M Slean, Meera Swami, Peggy F Shelbourne, Elisabeth R M Tillier, Darren G Monckton, Anne Messer,[...]. PLoS Genet 2013
78
11

Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene.
M Mahadevan, C Tsilfidis, L Sabourin, G Shutler, C Amemiya, G Jansen, C Neville, M Narang, J Barceló, K O'Hoy. Science 1992
9


The balancing act of DNA repeat expansions.
Jane C Kim, Sergei M Mirkin. Curr Opin Genet Dev 2013
72
11

Abundant contribution of short tandem repeats to gene expression variation in humans.
Melissa Gymrek, Thomas Willems, Audrey Guilmatre, Haoyang Zeng, Barak Markus, Stoyan Georgiev, Mark J Daly, Alkes L Price, Jonathan K Pritchard, Andrew J Sharp,[...]. Nat Genet 2016
138
8

Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study.
Davina J Hensman Moss, Antonio F Pardiñas, Douglas Langbehn, Kitty Lo, Blair R Leavitt, Raymund Roos, Alexandra Durr, Simon Mead, Peter Holmans, Lesley Jones,[...]. Lancet Neurol 2017
123
8

Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions.
Christopher E Pearson, Mandy Tam, Yuh-Hwa Wang, S Erin Montgomery, Arvin C Dar, John D Cleary, Kerrie Nichol. Nucleic Acids Res 2002
111
7

Glutamine repeats and neurodegeneration.
H Y Zoghbi, H T Orr. Annu Rev Neurosci 2000
951
7

Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats.
Kazuhiko Nakatani, Shinya Hagihara, Yuki Goto, Akio Kobori, Masaki Hagihara, Gosuke Hayashi, Motoki Kyo, Makoto Nomura, Masaki Mishima, Chojiro Kojima. Nat Chem Biol 2005
99
7


Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox.
Y H Fu, D P Kuhl, A Pizzuti, M Pieretti, J S Sutcliffe, S Richards, A J Verkerk, J J Holden, R G Fenwick, S T Warren. Cell 1991
7

Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.
A R La Spada, E M Wilson, D B Lubahn, A E Harding, K H Fischbeck. Nature 1991
7

Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
Guoqi Liu, Xiaomi Chen, John J Bissler, Richard R Sinden, Michael Leffak. Nat Chem Biol 2010
103
7

An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8)
M D Koob, M L Moseley, L J Schut, K A Benzow, T D Bird, J W Day, L P Ranum. Nat Genet 1999
445
7

DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.
Conceição Bettencourt, Davina Hensman-Moss, Michael Flower, Sarah Wiethoff, Alexis Brice, Cyril Goizet, Giovanni Stevanin, Georgios Koutsis, Georgia Karadima, Marios Panas,[...]. Ann Neurol 2016
105
7

Comparative genomics and molecular dynamics of DNA repeats in eukaryotes.
Guy-Franck Richard, Alix Kerrest, Bernard Dujon. Microbiol Mol Biol Rev 2008
267
7

Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
Caixia Hou, Nelson L S Chan, Liya Gu, Guo-Min Li. Nat Struct Mol Biol 2009
38
18

R loops stimulate genetic instability of CTG.CAG repeats.
Yunfu Lin, Sharon Y R Dent, John H Wilson, Robert D Wells, Marek Napierala. Proc Natl Acad Sci U S A 2010
124
7

Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells.
John D Cleary, Kerrie Nichol, Yuh-Hwa Wang, Christopher E Pearson. Nat Genet 2002
148
7

DNA triplet repeat expansion and mismatch repair.
Ravi R Iyer, Anna Pluciennik, Marek Napierala, Robert D Wells. Annu Rev Biochem 2015
71
9

Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.
Ricardo Mouro Pinto, Ella Dragileva, Andrew Kirby, Alejandro Lloret, Edith Lopez, Jason St Claire, Gagan B Panigrahi, Caixia Hou, Kim Holloway, Tammy Gillis,[...]. PLoS Genet 2013
105
7

A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients.
Fernando Morales, Melissa Vásquez, Carolina Santamaría, Patricia Cuenca, Eyleen Corrales, Darren G Monckton. DNA Repair (Amst) 2016
45
15

The landscape of human STR variation.
Thomas Willems, Melissa Gymrek, Gareth Highnam, David Mittelman, Yaniv Erlich. Genome Res 2014
108
7

Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member.
J D Brook, M E McCurrach, H G Harley, A J Buckler, D Church, H Aburatani, K Hunter, V P Stanton, J P Thirion, T Hudson. Cell 1992
7

Diseases of unstable repeat expansion: mechanisms and common principles.
Jennifer R Gatchel, Huda Y Zoghbi. Nat Rev Genet 2005
544
7

Simple sequence repeats as advantageous mutators in evolution.
Yechezkel Kashi, David G King. Trends Genet 2006
296
7




Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.