A citation-based method for searching scientific literature

Zhen Zhang, Fabiana Cerrato, Huansheng Xu, Francesca Vitelli, Masae Morishima, Joshua Vincentz, Yasuhide Furuta, Lijiang Ma, James F Martin, Antonio Baldini, Elizabeth Lindsay. Development 2005
Times Cited: 98







List of co-cited articles
1014 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice.
E A Lindsay, F Vitelli, H Su, M Morishima, T Huynh, T Pramparo, V Jurecic, G Ogunrinu, H F Sutherland, P J Scambler,[...]. Nature 2001
681
64


TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome.
S Merscher, B Funke, J A Epstein, J Heyer, A Puech, M M Lu, R J Xavier, M B Demay, R G Russell, S Factor,[...]. Cell 2001
654
57

Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract.
Huansheng Xu, Masae Morishima, John N Wylie, Robert J Schwartz, Benoit G Bruneau, Elizabeth A Lindsay, Antonio Baldini. Development 2004
269
46

Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways.
Francesca Vitelli, Masae Morishima, Ilaria Taddei, Elizabeth A Lindsay, Antonio Baldini. Hum Mol Genet 2002
244
44


Role of TBX1 in human del22q11.2 syndrome.
Hisato Yagi, Yoshiyuki Furutani, Hiromichi Hamada, Takashi Sasaki, Shuichi Asakawa, Shinsei Minoshima, Fukiko Ichida, Kunitaka Joo, Misa Kimura, Shin-ichiro Imamura,[...]. Lancet 2003
524
42

Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations.
Jelena S Arnold, Uwe Werling, Evan M Braunstein, Jun Liao, Sonja Nowotschin, Winfried Edelmann, Jean M Hebert, Bernice E Morrow. Development 2006
105
38

A genetic link between Tbx1 and fibroblast growth factor signaling.
Francesca Vitelli, Ilaria Taddei, Masae Morishima, Erik N Meyers, Elizabeth A Lindsay, Antonio Baldini. Development 2002
209
34


Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm.
Amélie Calmont, Sarah Ivins, Kelly Lammerts Van Bueren, Irinna Papangeli, Vanessa Kyriakopoulou, William D Andrews, James F Martin, Anne M Moon, Elizabeth A Illingworth, M Albert Basson,[...]. Development 2009
87
32

An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome.
Deborah U Frank, Lori K Fotheringham, Judson A Brewer, Louis J Muglia, Martin Tristani-Firouzi, Mario R Capecchi, Anne M Moon. Development 2002
267
27

Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development.
V Garg, C Yamagishi, T Hu, I S Kathiriya, H Yamagishi, D Srivastava. Dev Biol 2001
206
26

Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development.
Timothy L Macatee, Benjamin P Hammond, Benjamin R Arenkiel, Lily Francis, Deborah U Frank, Anne M Moon. Development 2003
188
25

Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors.
Tonghuan Hu, Hiroyuki Yamagishi, Jun Maeda, John McAnally, Chihiro Yamagishi, Deepak Srivastava. Development 2004
168
24

Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome.
Deborah L Guris, Gregg Duester, Virginia E Papaioannou, Akira Imamoto. Dev Cell 2006
133
24

Identification of downstream genetic pathways of Tbx1 in the second heart field.
Jun Liao, Vimla S Aggarwal, Sonja Nowotschin, Alexei Bondarev, Shari Lipner, Bernice E Morrow. Dev Biol 2008
94
24

Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse.
Radwan Abu-Issa, Graham Smyth, Ida Smoak, Ken-ichi Yamamura, Erik N Meyers. Development 2002
329
22

Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling.
Eon Joo Park, Lisa A Ogden, Amy Talbot, Sylvia Evans, Chen-Leng Cai, Brian L Black, Deborah U Frank, Anne M Moon. Development 2006
181
22

Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse.
Christopher B Brown, Jennifer M Wenning, Min Min Lu, Douglas J Epstein, Erik N Meyers, Jonathan A Epstein. Dev Biol 2004
107
21



Congenital heart disease in mice deficient for the DiGeorge syndrome region.
E A Lindsay, A Botta, V Jurecic, S Carattini-Rivera, Y C Cheah, H M Rosenblatt, A Bradley, A Baldini. Nature 1999
299
20

Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome.
Richard Paylor, Beate Glaser, Annalisa Mupo, Paris Ataliotis, Corinne Spencer, Angela Sobotka, Chelsey Sparks, Chul-Hee Choi, John Oghalai, Sarah Curran,[...]. Proc Natl Acad Sci U S A 2006
194
20

Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1.
Sarah Ivins, Kelly Lammerts van Beuren, Catherine Roberts, Chela James, Elizabeth Lindsay, Antonio Baldini, Paris Ataliotis, Peter J Scambler. Dev Biol 2005
66
28

The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis.
Robert G Kelly, Loydie A Jerome-Majewska, Virginia E Papaioannou. Hum Mol Genet 2004
169
18

Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development.
D L Chapman, N Garvey, S Hancock, M Alexiou, S I Agulnik, J J Gibson-Brown, J Cebra-Thomas, R J Bollag, L M Silver, V E Papaioannou. Dev Dyn 1996
486
18

Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart.
Chen-Leng Cai, Xingqun Liang, Yunqing Shi, Po-Hsien Chu, Samuel L Pfaff, Ju Chen, Sylvia Evans. Dev Cell 2003
18

Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage.
Jun Liao, Lazaros Kochilas, Sonja Nowotschin, Jelena S Arnold, Vimla S Aggarwal, Jonathan A Epstein, M Christian Brown, Joe Adams, Bernice E Morrow. Hum Mol Genet 2004
164
17

Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer.
Hiroyuki Yamagishi, Jun Maeda, Tonghuan Hu, John McAnally, Simon J Conway, Tsutomu Kume, Erik N Meyers, Chihiro Yamagishi, Deepak Srivastava. Genes Dev 2003
188
17

VEGF: a modifier of the del22q11 (DiGeorge) syndrome?
Ingeborg Stalmans, Diether Lambrechts, Frederik De Smet, Sandra Jansen, Jian Wang, Sunit Maity, Paige Kneer, Maren von der Ohe, Ann Swillen, Christa Maes,[...]. Nat Med 2003
214
17

MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube.
Y Saga, S Miyagawa-Tomita, A Takagi, S Kitajima, J i Miyazaki, T Inoue. Development 1999
377
17

Fate of the mammalian cardiac neural crest.
X Jiang, D H Rowitch, P Soriano, A P McMahon, H M Sucov. Development 2000
820
17

In vivo response to high-resolution variation of Tbx1 mRNA dosage.
Zhen Zhang, Antonio Baldini. Hum Mol Genet 2008
83
20


Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study.
A K Ryan, J A Goodship, D I Wilson, N Philip, A Levy, H Seidel, S Schuffenhauer, H Oechsler, B Belohradsky, M Prieur,[...]. J Med Genet 1997
820
15

Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes.
Anne M Moon, Deborah L Guris, Ji-heui Seo, Leiming Li, Jennetta Hammond, Amy Talbot, Akira Imamoto. Dev Cell 2006
100
14


Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field.
Sonja Nowotschin, Jun Liao, Philip J Gage, Jonathan A Epstein, Marina Campione, Bernice E Morrow. Development 2006
103
14

Tbx1 regulates proliferation and differentiation of multipotent heart progenitors.
Li Chen, Filomena Gabriella Fulcoli, Susan Tang, Antonio Baldini. Circ Res 2009
93
15

Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice.
Victoria Randall, Karen McCue, Catherine Roberts, Vanessa Kyriakopoulou, Sarah Beddow, Angela N Barrett, Francesca Vitelli, Katrina Prescott, Charles Shaw-Smith, Koen Devriendt,[...]. J Clin Invest 2009
95
14


Fgf8 is required for anterior heart field development.
Roger Ilagan, Radwan Abu-Issa, Doris Brown, Yu-Ping Yang, Kai Jiao, Robert J Schwartz, John Klingensmith, Erik N Meyers. Development 2006
166
13

Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants.
Francesca Vitelli, Zhen Zhang, Tuong Huynh, Angela Sobotka, Annalisa Mupo, Antonio Baldini. Dev Biol 2006
40
32

Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome.
Kelly Lammerts van Bueren, Irinna Papangeli, Francesca Rochais, Kerra Pearce, Catherine Roberts, Amelie Calmont, Dorota Szumska, Robert G Kelly, Shoumo Bhattacharya, Peter J Scambler. Dev Biol 2010
47
27

Neural crest cells contribute to normal aorticopulmonary septation.
M L Kirby, T F Gale, D E Stewart. Science 1983
853
12

Retinoic acid down-regulates Tbx1 expression in vivo and in vitro.
Catherine Roberts, Sarah M Ivins, Chela T James, Peter J Scambler. Dev Dyn 2005
77
15

Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions.
Christiane Zweier, Heinrich Sticht, Inci Aydin-Yaylagül, Christine E Campbell, Anita Rauch. Am J Hum Genet 2007
141
12

Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner.
F Gabriella Fulcoli, Tuong Huynh, Peter J Scambler, Antonio Baldini. PLoS One 2009
71
16

The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans.
Tatjana Piotrowski, Dae-gwon Ahn, Thomas F Schilling, Sreelaja Nair, Ilya Ruvinsky, Robert Geisler, Gerd-Jörg Rauch, Pascal Haffter, Leonard I Zon, Yi Zhou,[...]. Development 2003
159
11


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.