A citation-based method for searching scientific literature

Cory Pfeiffenberger, Jena Yamada, David A Feldheim. J Neurosci 2006
Times Cited: 119







List of co-cited articles
1081 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping.
D A Feldheim, Y I Kim, A D Bergemann, J Frisén, M Barbacid, J G Flanagan. Neuron 2000
355
41

Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.
Todd McLaughlin, Christine L Torborg, Marla B Feller, Dennis D M O'Leary. Neuron 2003
288
35

Mechanisms underlying development of visual maps and receptive fields.
Andrew D Huberman, Marla B Feller, Barbara Chapman. Annu Rev Neurosci 2008
398
33

Molecular gradients and development of retinotopic maps.
Todd McLaughlin, Dennis D M O'Leary. Annu Rev Neurosci 2005
303
32

Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling.
A Brown, P A Yates, P Burrola, D Ortuño, A Vaidya, T M Jessell, S L Pfaff, D D O'Leary, G Lemke. Cell 2000
259
32

Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system.
J Frisén, P A Yates, T McLaughlin, G C Friedman, D D O'Leary, M Barbacid. Neuron 1998
347
32

Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system.
Tahira Rashid, A Louise Upton, Aida Blentic, Thomas Ciossek, Bernd Knöll, Ian D Thompson, Uwe Drescher. Neuron 2005
123
31

Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
Anand R Chandrasekaran, Daniel T Plas, Ernesto Gonzalez, Michael C Crair. J Neurosci 2005
126
30


Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus.
Jianhua Cang, Lupeng Wang, Michael P Stryker, David A Feldheim. J Neurosci 2008
71
40




Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping.
Cory Pfeiffenberger, Tyler Cutforth, Georgia Woods, Jena Yamada, René C Rentería, David R Copenhagen, John G Flanagan, David A Feldheim. Nat Neurosci 2005
140
25

Development of single retinofugal axon arbors in normal and β2 knock-out mice.
Onkar S Dhande, Ethan W Hua, Emily Guh, Jonathan Yeh, Shivani Bhatt, Yueyi Zhang, Edward S Ruthazer, Marla B Feller, Michael C Crair. J Neurosci 2011
81
30

p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping.
Yoo-Shick Lim, Todd McLaughlin, Tsung-Chang Sung, Alicia Santiago, Kuo-Fen Lee, Dennis D M O'Leary. Neuron 2008
149
24


Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons.
M R Hornberger, D Dütting, T Ciossek, T Yamada, C Handwerker, S Lang, F Weth, J Huf, R Wessel, C Logan,[...]. Neuron 1999
295
23

Topographic guidance labels in a sensory projection to the forebrain.
D A Feldheim, P Vanderhaeghen, M J Hansen, J Frisén, Q Lu, M Barbacid, J G Flanagan. Neuron 1998
223
23

Retinal input instructs alignment of visual topographic maps.
Jason W Triplett, Melinda T Owens, Jena Yamada, Greg Lemke, Jianhua Cang, Michael P Stryker, David A Feldheim. Cell 2009
71
32

Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition.
David A Feldheim, Dennis D M O'Leary. Cold Spring Harb Perspect Biol 2010
131
23

A relative signalling model for the formation of a topographic neural map.
Michaël Reber, Patrick Burrola, Greg Lemke. Nature 2004
90
24

Loss-of-function analysis of EphA receptors in retinotectal mapping.
David A Feldheim, Masaru Nakamoto, Miriam Osterfield, Nicholas W Gale, Thomas M DeChiara, Rajat Rohatgi, George D Yancopoulos, John G Flanagan. J Neurosci 2004
113
22

Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells.
Andrew D Huberman, Mihai Manu, Selina M Koch, Michael W Susman, Amanda Brosius Lutz, Erik M Ullian, Stephen A Baccus, Ben A Barres. Neuron 2008
199
22

Retinal waves coordinate patterned activity throughout the developing visual system.
James B Ackman, Timothy J Burbridge, Michael C Crair. Nature 2012
239
22


EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping.
Robert Hindges, Todd McLaughlin, Nicolas Genoud, Mark Henkemeyer, Dennis D M O'Leary. Neuron 2002
238
20

An instructive role for patterned spontaneous retinal activity in mouse visual map development.
Hong-ping Xu, Moran Furman, Yann S Mineur, Hui Chen, Sarah L King, David Zenisek, Z Jimmy Zhou, Daniel A Butts, Ning Tian, Marina R Picciotto,[...]. Neuron 2011
112
20

Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
M B Feller, D P Wellis, D Stellwagen, F S Werblin, C J Shatz. Science 1996
397
19

Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers.
Gianna Muir-Robinson, Bryan J Hwang, Marla B Feller. J Neurosci 2002
129
19

Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
Jianhua Cang, René C Rentería, Megumi Kaneko, Xiaorong Liu, David R Copenhagen, Michael P Stryker. Neuron 2005
201
19

Structural and functional composition of the developing retinogeniculate pathway in the mouse.
Lisa Jaubert-Miazza, Erick Green, Fu-Sun Lo, Kim Bui, Jeremy Mills, William Guido. Vis Neurosci 2005
160
19

Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.
Ben K Stafford, Alexander Sher, Alan M Litke, David A Feldheim. Neuron 2009
89
21

Developmental mechanisms of topographic map formation and alignment.
Jianhua Cang, David A Feldheim. Annu Rev Neurosci 2013
133
19

cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map.
Xavier Nicol, Sylvie Voyatzis, Aude Muzerelle, Nicolas Narboux-Nême, Thomas C Südhof, Richard Miles, Patricia Gaspar. Nat Neurosci 2007
124
18




Retinotopic order in the absence of axon competition.
Nathan J Gosse, Linda M Nevin, Herwig Baier. Nature 2008
61
27

Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity.
Jianhua Cang, Cristopher M Niell, Xiaorong Liu, Cory Pfeiffenberger, David A Feldheim, Michael P Stryker. Neuron 2008
70
24

Silencing of EphA3 through a cis interaction with ephrinA5.
Ricardo F Carvalho, Martin Beutler, Katharine J M Marler, Bernd Knöll, Elena Becker-Barroso, R Heintzmann, Tony Ng, Uwe Drescher. Nat Neurosci 2006
142
16


Ephrin-as guide the formation of functional maps in the visual cortex.
Jianhua Cang, Megumi Kaneko, Jena Yamada, Georgia Woods, Michael P Stryker, David A Feldheim. Neuron 2005
129
16


Eph and ephrin signaling in the formation of topographic maps.
Jason W Triplett, David A Feldheim. Semin Cell Dev Biol 2012
66
24

Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping.
Adam M Schmitt, Jun Shi, Alex M Wolf, Chin-Chun Lu, Leslie A King, Yimin Zou. Nature 2006
209
15

Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo.
M Nakamoto, H J Cheng, G C Friedman, T McLaughlin, M J Hansen, C H Yoon, D D O'Leary, J G Flanagan. Cell 1996
358
15

Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus.
Andrew D Huberman, Karl D Murray, David K Warland, David A Feldheim, Barbara Chapman. Nat Neurosci 2005
75
20

Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion.
Andrew D Huberman, Wei Wei, Justin Elstrott, Ben K Stafford, Marla B Feller, Ben A Barres. Neuron 2009
253
15

Visual map development depends on the temporal pattern of binocular activity in mice.
Jiayi Zhang, James B Ackman, Hong-Ping Xu, Michael C Crair. Nat Neurosci 2011
90
16


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.