A citation-based method for searching scientific literature

Kerstin S Wendt, Keisuke Yoshida, Takehiko Itoh, Masashige Bando, Birgit Koch, Erika Schirghuber, Shuichi Tsutsumi, Genta Nagae, Ko Ishihara, Tsuyoshi Mishiro, Kazuhide Yahata, Fumio Imamoto, Hiroyuki Aburatani, Mitsuyoshi Nakao, Naoko Imamoto, Kazuhiro Maeshima, Katsuhiko Shirahige, Jan-Michael Peters. Nature 2008
Times Cited: 809







List of co-cited articles
1440 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Suhas S P Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander,[...]. Cell 2014
53

Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu, Bing Ren. Nature 2012
53

Cohesin Loss Eliminates All Loop Domains.
Suhas S P Rao, Su-Chen Huang, Brian Glenn St Hilaire, Jesse M Engreitz, Elizabeth M Perez, Kyong-Rim Kieffer-Kwon, Adrian L Sanborn, Sarah E Johnstone, Gavin D Bascom, Ivan D Bochkov,[...]. Cell 2017
667
51

Cohesins functionally associate with CTCF on mammalian chromosome arms.
Vania Parelho, Suzana Hadjur, Mikhail Spivakov, Marion Leleu, Stephan Sauer, Heather C Gregson, Adam Jarmuz, Claudia Canzonetta, Zoe Webster, Tatyana Nesterova,[...]. Cell 2008
631
49

Formation of Chromosomal Domains by Loop Extrusion.
Geoffrey Fudenberg, Maxim Imakaev, Carolyn Lu, Anton Goloborodko, Nezar Abdennur, Leonid A Mirny. Cell Rep 2016
721
47

Two independent modes of chromatin organization revealed by cohesin removal.
Wibke Schwarzer, Nezar Abdennur, Anton Goloborodko, Aleksandra Pekowska, Geoffrey Fudenberg, Yann Loe-Mie, Nuno A Fonseca, Wolfgang Huber, Christian H Haering, Leonid Mirny,[...]. Nature 2017
433
43

Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Adrian L Sanborn, Suhas S P Rao, Su-Chen Huang, Neva C Durand, Miriam H Huntley, Andrew I Jewett, Ivan D Bochkov, Dharmaraj Chinnappan, Ashok Cutkosky, Jian Li,[...]. Proc Natl Acad Sci U S A 2015
766
43

Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Elphège P Nora, Bryan R Lajoie, Edda G Schulz, Luca Giorgetti, Ikuhiro Okamoto, Nicolas Servant, Tristan Piolot, Nynke L van Berkum, Johannes Meisig, John Sedat,[...]. Nature 2012
41

Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.
Elphège P Nora, Anton Goloborodko, Anne-Laure Valton, Johan H Gibcus, Alec Uebersohn, Nezar Abdennur, Job Dekker, Leonid A Mirny, Benoit G Bruneau. Cell 2017
626
41

The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
Judith H I Haarhuis, Robin H van der Weide, Vincent A Blomen, J Omar Yáñez-Cuna, Mario Amendola, Marjon S van Ruiten, Peter H L Krijger, Hans Teunissen, René H Medema, Bas van Steensel,[...]. Cell 2017
311
39

Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
Gordana Wutz, Csilla Várnai, Kota Nagasaka, David A Cisneros, Roman R Stocsits, Wen Tang, Stefan Schoenfelder, Gregor Jessberger, Matthias Muhar, M Julius Hossain,[...]. EMBO J 2017
271
36

CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
Ya Guo, Quan Xu, Daniele Canzio, Jia Shou, Jinhuan Li, David U Gorkin, Inkyung Jung, Haiyang Wu, Yanan Zhai, Yuanxiao Tang,[...]. Cell 2015
491
36

Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner,[...]. Science 2009
36

CTCF Binding Polarity Determines Chromatin Looping.
Elzo de Wit, Erica S M Vos, Sjoerd J B Holwerda, Christian Valdes-Quezada, Marjon J A M Verstegen, Hans Teunissen, Erik Splinter, Patrick J Wijchers, Peter H L Krijger, Wouter de Laat. Mol Cell 2015
295
29

Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells.
Jessica Zuin, Jesse R Dixon, Michael I J A van der Reijden, Zhen Ye, Petros Kolovos, Rutger W W Brouwer, Mariëtte P C van de Corput, Harmen J G van de Werken, Tobias A Knoch, Wilfred F J van IJcken,[...]. Proc Natl Acad Sci U S A 2014
471
28

Mediator and cohesin connect gene expression and chromatin architecture.
Michael H Kagey, Jamie J Newman, Steve Bilodeau, Ye Zhan, David A Orlando, Nynke L van Berkum, Christopher C Ebmeier, Jesse Goossens, Peter B Rahl, Stuart S Levine,[...]. Nature 2010
28

DNA loop extrusion by human cohesin.
Iain F Davidson, Benedikt Bauer, Daniela Goetz, Wen Tang, Gordana Wutz, Jan-Michael Peters. Science 2019
203
28

Human cohesin compacts DNA by loop extrusion.
Yoori Kim, Zhubing Shi, Hongshan Zhang, Ilya J Finkelstein, Hongtao Yu. Science 2019
186
27

CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation.
Matthias Merkenschlager, Elphège P Nora. Annu Rev Genomics Hum Genet 2016
234
26

CTCF and cohesin regulate chromatin loop stability with distinct dynamics.
Anders S Hansen, Iryna Pustova, Claudia Cattoglio, Robert Tjian, Xavier Darzacq. Elife 2017
221
24

Cohesin-mediated interactions organize chromosomal domain architecture.
Sevil Sofueva, Eitan Yaffe, Wen-Ching Chan, Dimitra Georgopoulou, Matteo Vietri Rudan, Hegias Mira-Bontenbal, Steven M Pollard, Gary P Schroth, Amos Tanay, Suzana Hadjur. EMBO J 2013
259
23

Three-dimensional folding and functional organization principles of the Drosophila genome.
Tom Sexton, Eitan Yaffe, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin Leblanc, Michael Hoichman, Hugues Parrinello, Amos Tanay, Giacomo Cavalli. Cell 2012
23

Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.
Georg A Busslinger, Roman R Stocsits, Petra van der Lelij, Elin Axelsson, Antonio Tedeschi, Niels Galjart, Jan-Michael Peters. Nature 2017
195
22

Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture.
Matteo Vietri Rudan, Christopher Barrington, Stephen Henderson, Christina Ernst, Duncan T Odom, Amos Tanay, Suzana Hadjur. Cell Rep 2015
376
22

CTCF physically links cohesin to chromatin.
Eric D Rubio, David J Reiss, Piri L Welcsh, Christine M Disteche, Galina N Filippova, Nitin S Baliga, Ruedi Aebersold, Jeffrey A Ranish, Anton Krumm. Proc Natl Acad Sci U S A 2008
359
21

Architectural protein subclasses shape 3D organization of genomes during lineage commitment.
Jennifer E Phillips-Cremins, Michael E G Sauria, Amartya Sanyal, Tatiana I Gerasimova, Bryan R Lajoie, Joshua S K Bell, Chin-Tong Ong, Tracy A Hookway, Changying Guo, Yuhua Sun,[...]. Cell 2013
720
20

Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.
Darío G Lupiáñez, Katerina Kraft, Verena Heinrich, Peter Krawitz, Francesco Brancati, Eva Klopocki, Denise Horn, Hülya Kayserili, John M Opitz, Renata Laxova,[...]. Cell 2015
942
20

A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
Johanna Gassler, Hugo B Brandão, Maxim Imakaev, Ilya M Flyamer, Sabrina Ladstätter, Wendy A Bickmore, Jan-Michael Peters, Leonid A Mirny, Kikuë Tachibana. EMBO J 2017
147
19

The structural basis for cohesin-CTCF-anchored loops.
Yan Li, Judith H I Haarhuis, Ángela Sedeño Cacciatore, Roel Oldenkamp, Marjon S van Ruiten, Laureen Willems, Hans Teunissen, Kyle W Muir, Elzo de Wit, Benjamin D Rowland,[...]. Nature 2020
77
24

Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins.
R Ciosk, M Shirayama, A Shevchenko, T Tanaka, A Toth, A Shevchenko, K Nasmyth. Mol Cell 2000
495
18

CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
Varun Narendra, Pedro P Rocha, Disi An, Ramya Raviram, Jane A Skok, Esteban O Mazzoni, Danny Reinberg. Science 2015
306
18

Chromatin organization by an interplay of loop extrusion and compartmental segregation.
Johannes Nuebler, Geoffrey Fudenberg, Maxim Imakaev, Nezar Abdennur, Leonid A Mirny. Proc Natl Acad Sci U S A 2018
221
18

Organizational principles of 3D genome architecture.
M Jordan Rowley, Victor G Corces. Nat Rev Genet 2018
323
18

Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus.
Suzana Hadjur, Luke M Williams, Natalie K Ryan, Bradley S Cobb, Tom Sexton, Peter Fraser, Amanda G Fisher, Matthias Merkenschlager. Nature 2009
387
18

Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells.
Bogdan Bintu, Leslie J Mateo, Jun-Han Su, Nicholas A Sinnott-Armstrong, Mirae Parker, Seon Kinrot, Kei Yamaya, Alistair N Boettiger, Xiaowei Zhuang. Science 2018
308
17

Real-time imaging of DNA loop extrusion by condensin.
Mahipal Ganji, Indra A Shaltiel, Shveta Bisht, Eugene Kim, Ana Kalichava, Christian H Haering, Cees Dekker. Science 2018
282
17

Rapid movement and transcriptional re-localization of human cohesin on DNA.
Iain F Davidson, Daniela Goetz, Maciej P Zaczek, Maxim I Molodtsov, Pim J Huis In 't Veld, Florian Weissmann, Gabriele Litos, David A Cisneros, Maria Ocampo-Hafalla, Rene Ladurner,[...]. EMBO J 2016
119
16


Multiscale 3D Genome Rewiring during Mouse Neural Development.
Boyan Bonev, Netta Mendelson Cohen, Quentin Szabo, Lauriane Fritsch, Giorgio L Papadopoulos, Yaniv Lubling, Xiaole Xu, Xiaodan Lv, Jean-Philippe Hugnot, Amos Tanay,[...]. Cell 2017
467
16

CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus.
Erik Splinter, Helen Heath, Jurgen Kooren, Robert-Jan Palstra, Petra Klous, Frank Grosveld, Niels Galjart, Wouter de Laat. Genes Dev 2006
493
16


Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes.
Jill M Dowen, Zi Peng Fan, Denes Hnisz, Gang Ren, Brian J Abraham, Lyndon N Zhang, Abraham S Weintraub, Jurian Schujiers, Tong Ihn Lee, Keji Zhao,[...]. Cell 2014
506
15

Cohesin: its roles and mechanisms.
Kim Nasmyth, Christian H Haering. Annu Rev Genet 2009
670
14

Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation.
Sergi Cuartero, Felix D Weiss, Gopuraja Dharmalingam, Ya Guo, Elizabeth Ing-Simmons, Silvia Masella, Irene Robles-Rebollo, Xiaolin Xiao, Yi-Fang Wang, Iros Barozzi,[...]. Nat Immunol 2018
82
17

Wapl is an essential regulator of chromatin structure and chromosome segregation.
Antonio Tedeschi, Gordana Wutz, Sébastien Huet, Markus Jaritz, Annelie Wuensche, Erika Schirghuber, Iain Finley Davidson, Wen Tang, David A Cisneros, Venugopal Bhaskara,[...]. Nature 2013
169
14

Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments.
Vlad C Seitan, Andre J Faure, Ye Zhan, Rachel Patton McCord, Bryan R Lajoie, Elizabeth Ing-Simmons, Boris Lenhard, Luca Giorgetti, Edith Heard, Amanda G Fisher,[...]. Genome Res 2013
212
14

CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.
Zhonghui Tang, Oscar Junhong Luo, Xingwang Li, Meizhen Zheng, Jacqueline Jufen Zhu, Przemyslaw Szalaj, Pawel Trzaskoma, Adriana Magalska, Jakub Wlodarczyk, Blazej Ruszczycki,[...]. Cell 2015
482
14

The Energetics and Physiological Impact of Cohesin Extrusion.
Laura Vian, Aleksandra Pękowska, Suhas S P Rao, Kyong-Rim Kieffer-Kwon, Seolkyoung Jung, Laura Baranello, Su-Chen Huang, Laila El Khattabi, Marei Dose, Nathanael Pruett,[...]. Cell 2018
169
14

Model-based analysis of ChIP-Seq (MACS).
Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E Bernstein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li,[...]. Genome Biol 2008
14

Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus.
Raffaella Nativio, Kerstin S Wendt, Yoko Ito, Joanna E Huddleston, Santiago Uribe-Lewis, Kathryn Woodfine, Christel Krueger, Wolf Reik, Jan-Michael Peters, Adele Murrell. PLoS Genet 2009
252
14


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.