A citation-based method for searching scientific literature


List of co-cited articles
589 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Mechanisms underlying development of visual maps and receptive fields.
Andrew D Huberman, Marla B Feller, Barbara Chapman. Annu Rev Neurosci 2008
391
44

Retinal waves and visual system development.
R O Wong. Annu Rev Neurosci 1999
352
37

Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.
Todd McLaughlin, Christine L Torborg, Marla B Feller, Dennis D M O'Leary. Neuron 2003
286
34



Synaptic and extrasynaptic factors governing glutamatergic retinal waves.
Aaron G Blankenship, Kevin J Ford, Juliette Johnson, Rebecca P Seal, Robert H Edwards, David R Copenhagen, Marla B Feller. Neuron 2009
66
34

Mechanisms underlying spontaneous patterned activity in developing neural circuits.
Aaron G Blankenship, Marla B Feller. Nat Rev Neurosci 2010
423
34

Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.
Ben K Stafford, Alexander Sher, Alan M Litke, David A Feldheim. Neuron 2009
89
32

Retinal waves coordinate patterned activity throughout the developing visual system.
James B Ackman, Timothy J Burbridge, Michael C Crair. Nature 2012
235
32

Spontaneous patterned retinal activity and the refinement of retinal projections.
Christine L Torborg, Marla B Feller. Prog Neurobiol 2005
171
29




An instructive role for patterned spontaneous retinal activity in mouse visual map development.
Hong-ping Xu, Moran Furman, Yann S Mineur, Hui Chen, Sarah L King, David Zenisek, Z Jimmy Zhou, Daniel A Butts, Ning Tian, Marina R Picciotto,[...]. Neuron 2011
112
27

Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
Jianhua Cang, René C Rentería, Megumi Kaneko, Xiaorong Liu, David R Copenhagen, Michael P Stryker. Neuron 2005
198
25


Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor.
Chao Sun, David K Warland, Jose M Ballesteros, Deborah van der List, Leo M Chalupa. Proc Natl Acad Sci U S A 2008
59
25

Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
Anand R Chandrasekaran, Daniel T Plas, Ernesto Gonzalez, Michael C Crair. J Neurosci 2005
125
24


Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
M B Feller, D P Wellis, D Stellwagen, F S Werblin, C J Shatz. Science 1996
393
24

High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections.
Christine L Torborg, Kristi A Hansen, Marla B Feller. Nat Neurosci 2005
114
24

Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina.
Mohsin Md Syed, Seunghoon Lee, Jijian Zheng, Z Jimmy Zhou. J Physiol 2004
85
22

Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity.
Jay Demas, Botir T Sagdullaev, Erick Green, Lisa Jaubert-Miazza, Maureen A McCall, Ronald G Gregg, Rachel O L Wong, William Guido. Neuron 2006
95
22

Retinal waves trigger spindle bursts in the neonatal rat visual cortex.
Ileana L Hanganu, Yehezkel Ben-Ari, Rustem Khazipov. J Neurosci 2006
189
22

Intersecting circuits generate precisely patterned retinal waves.
Alejandro Akrouh, Daniel Kerschensteiner. Neuron 2013
32
40

Competition in retinogeniculate patterning driven by spontaneous activity.
A A Penn, P A Riquelme, M B Feller, C J Shatz. Science 1998
374
20





Dynamic processes shape spatiotemporal properties of retinal waves.
M B Feller, D A Butts, H L Aaron, D S Rokhsar, C J Shatz. Neuron 1997
121
18

Neurotransmission selectively regulates synapse formation in parallel circuits in vivo.
Daniel Kerschensteiner, Josh L Morgan, Edward D Parker, Renate M Lewis, Rachel O L Wong. Nature 2009
130
18



Disruption and recovery of patterned retinal activity in the absence of acetylcholine.
Rebecca C Stacy, Jay Demas, Robert W Burgess, Joshua R Sanes, Rachel O L Wong. J Neurosci 2005
53
18




Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping.
Cory Pfeiffenberger, Tyler Cutforth, Georgia Woods, Jena Yamada, René C Rentería, David R Copenhagen, John G Flanagan, David A Feldheim. Nat Neurosci 2005
139
15


Visual map development depends on the temporal pattern of binocular activity in mice.
Jiayi Zhang, James B Ackman, Hong-Ping Xu, Michael C Crair. Nat Neurosci 2011
89
15

Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves.
Alana Firl, Georgeann S Sack, Zachary L Newman, Hiroaki Tani, Marla B Feller. J Neurophysiol 2013
19
47

Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse.
Alessandro Maccione, Matthias H Hennig, Mauro Gandolfo, Oliver Muthmann, James van Coppenhagen, Stephen J Eglen, Luca Berdondini, Evelyne Sernagor. J Physiol 2014
56
16

Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors.
Timothy J Burbridge, Hong-Ping Xu, James B Ackman, Xinxin Ge, Yueyi Zhang, Mei-Jun Ye, Z Jimmy Zhou, Jian Xu, Anis Contractor, Michael C Crair. Neuron 2014
56
16

Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers.
Gianna Muir-Robinson, Bryan J Hwang, Marla B Feller. J Neurosci 2002
129
13

Parallel processing in the mammalian retina.
Heinz Wässle. Nat Rev Neurosci 2004
661
13

Retinal waves: mechanisms and function in visual system development.
Sally I Firth, Chih-Tien Wang, Marla B Feller. Cell Calcium 2005
80
13


Structural and functional composition of the developing retinogeniculate pathway in the mouse.
Lisa Jaubert-Miazza, Erick Green, Fu-Sun Lo, Kim Bui, Jeremy Mills, William Guido. Vis Neurosci 2005
154
13



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.