A citation-based method for searching scientific literature

Mikhail Eltsov, Kirsty M Maclellan, Kazuhiro Maeshima, Achilleas S Frangakis, Jacques Dubochet. Proc Natl Acad Sci U S A 2008
Times Cited: 229







List of co-cited articles
1285 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells.
Horng D Ou, Sébastien Phan, Thomas J Deerinck, Andrea Thor, Mark H Ellisman, Clodagh C O'Shea. Science 2017
361
70

Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure.
Yoshinori Nishino, Mikhail Eltsov, Yasumasa Joti, Kazuki Ito, Hideaki Takata, Yukio Takahashi, Saera Hihara, Achilleas S Frangakis, Naoko Imamoto, Tetsuya Ishikawa,[...]. EMBO J 2012
194
58

Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
Feng Song, Ping Chen, Dapeng Sun, Mingzhu Wang, Liping Dong, Dan Liang, Rui-Ming Xu, Ping Zhu, Guohong Li. Science 2014
338
57

Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.
Maria Aurelia Ricci, Carlo Manzo, María Filomena García-Parajo, Melike Lakadamyali, Maria Pia Cosma. Cell 2015
308
49

Crystal structure of the nucleosome core particle at 2.8 A resolution.
K Luger, A W Mäder, R K Richmond, D F Sargent, T J Richmond. Nature 1997
48

X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
Thomas Schalch, Sylwia Duda, David F Sargent, Timothy J Richmond. Nature 2005
506
43

Solenoidal model for superstructure in chromatin.
J T Finch, A Klug. Proc Natl Acad Sci U S A 1976
40

EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
Philip J J Robinson, Louise Fairall, Van A T Huynh, Daniela Rhodes. Proc Natl Acad Sci U S A 2006
307
40

Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner,[...]. Science 2009
37

Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging.
Tadasu Nozaki, Ryosuke Imai, Mai Tanbo, Ryosuke Nagashima, Sachiko Tamura, Tomomi Tani, Yasumasa Joti, Masaru Tomita, Kayo Hibino, Masato T Kanemaki,[...]. Mol Cell 2017
176
36

Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C.
Tsung-Han S Hsieh, Assaf Weiner, Bryan Lajoie, Job Dekker, Nir Friedman, Oliver J Rando. Cell 2015
280
35

Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers.
Kazuhiro Maeshima, Ryan Rogge, Sachiko Tamura, Yasumasa Joti, Takaaki Hikima, Heather Szerlong, Christine Krause, Jake Herman, Erik Seidel, Jennifer DeLuca,[...]. EMBO J 2016
94
37

Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres.
Eden Fussner, Mike Strauss, Ugljesa Djuric, Ren Li, Kashif Ahmed, Michael Hart, James Ellis, David P Bazett-Jones. EMBO Rep 2012
99
34

A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Suhas S P Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander,[...]. Cell 2014
32

Chromatin structure: does the 30-nm fibre exist in vivo?
Kazuhiro Maeshima, Saera Hihara, Mikhail Eltsov. Curr Opin Cell Biol 2010
167
30

Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu, Bing Ren. Nature 2012
29

Chromatin as dynamic 10-nm fibers.
Kazuhiro Maeshima, Ryosuke Imai, Sachiko Tamura, Tadasu Nozaki. Chromosoma 2014
108
26

Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo.
Chen Chen, Hong Hwa Lim, Jian Shi, Sachiko Tamura, Kazuhiro Maeshima, Uttam Surana, Lu Gan. Mol Biol Cell 2016
42
61

Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping.
Viviana I Risca, Sarah K Denny, Aaron F Straight, William J Greenleaf. Nature 2017
89
29

Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.
Sergei A Grigoryev, Gavin Bascom, Jenna M Buckwalter, Michael B Schubert, Christopher L Woodcock, Tamar Schlick. Proc Natl Acad Sci U S A 2016
83
30

Chromosomes without a 30-nm chromatin fiber.
Yasumasa Joti, Takaaki Hikima, Yoshinori Nishino, Fukumi Kamada, Saera Hihara, Hideaki Takata, Tetsuya Ishikawa, Kazuhiro Maeshima. Nucleus 2012
88
28

Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
Sergei A Grigoryev, Gaurav Arya, Sarah Correll, Christopher L Woodcock, Tamar Schlick. Proc Natl Acad Sci U S A 2009
157
24

Organization of the mitotic chromosome.
Natalia Naumova, Maxim Imakaev, Geoffrey Fudenberg, Ye Zhan, Bryan R Lajoie, Leonid A Mirny, Job Dekker. Science 2013
517
23

A pathway for mitotic chromosome formation.
Johan H Gibcus, Kumiko Samejima, Anton Goloborodko, Itaru Samejima, Natalia Naumova, Johannes Nuebler, Masato T Kanemaki, Linfeng Xie, James R Paulson, William C Earnshaw,[...]. Science 2018
269
23

Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
Rosana Collepardo-Guevara, Tamar Schlick. Proc Natl Acad Sci U S A 2014
83
26

Living without 30nm chromatin fibers.
Eden Fussner, Reagan W Ching, David P Bazett-Jones. Trends Biochem Sci 2011
125
22

Organization of Chromatin by Intrinsic and Regulated Phase Separation.
Bryan A Gibson, Lynda K Doolittle, Maximillian W G Schneider, Liv E Jensen, Nathan Gamarra, Lisa Henry, Daniel W Gerlich, Sy Redding, Michael K Rosen. Cell 2019
261
22

Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Adrian L Sanborn, Suhas S P Rao, Su-Chen Huang, Neva C Durand, Miriam H Huntley, Andrew I Jewett, Ivan D Bochkov, Dharmaraj Chinnappan, Ashok Cutkosky, Jian Li,[...]. Proc Natl Acad Sci U S A 2015
766
21

Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.
Adam G Larson, Daniel Elnatan, Madeline M Keenen, Michael J Trnka, Jonathan B Johnston, Alma L Burlingame, David A Agard, Sy Redding, Geeta J Narlikar. Nature 2017
679
21

Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.
Margot P Scheffer, Mikhail Eltsov, Achilleas S Frangakis. Proc Natl Acad Sci U S A 2011
85
23

Nucleosome arrays reveal the two-start organization of the chromatin fiber.
Benedetta Dorigo, Thomas Schalch, Alexandra Kulangara, Sylwia Duda, Rasmus R Schroeder, Timothy J Richmond. Science 2004
375
20


Cohesin Loss Eliminates All Loop Domains.
Suhas S P Rao, Su-Chen Huang, Brian Glenn St Hilaire, Jesse M Engreitz, Elizabeth M Perez, Kyong-Rim Kieffer-Kwon, Adrian L Sanborn, Sarah E Johnstone, Gavin D Bascom, Ivan D Bochkov,[...]. Cell 2017
667
20

Phase separation drives heterochromatin domain formation.
Amy R Strom, Alexander V Emelyanov, Mustafa Mir, Dmitry V Fyodorov, Xavier Darzacq, Gary H Karpen. Nature 2017
729
20

Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution.
Curt A Davey, David F Sargent, Karolin Luger, Armin W Maeder, Timothy J Richmond. J Mol Biol 2002
966
19



Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Elphège P Nora, Bryan R Lajoie, Edda G Schulz, Luca Giorgetti, Ikuhiro Okamoto, Nicolas Servant, Tristan Piolot, Nynke L van Berkum, Johannes Meisig, John Sedat,[...]. Nature 2012
18

Spheroid chromatin units (v bodies).
A L Olins, D E Olins. Science 1974
18

Capturing Structural Heterogeneity in Chromatin Fibers.
Babatunde Ekundayo, Timothy J Richmond, Thomas Schalch. J Mol Biol 2017
31
58

Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo.
Shujun Cai, Chen Chen, Zhi Yang Tan, Yinyi Huang, Jian Shi, Lu Gan. Proc Natl Acad Sci U S A 2018
30
60

Structural Mechanisms of Nucleosome Recognition by Linker Histones.
Bing-Rui Zhou, Jiansheng Jiang, Hanqiao Feng, Rodolfo Ghirlando, T Sam Xiao, Yawen Bai. Mol Cell 2015
128
17

Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
Andrew Routh, Sara Sandin, Daniela Rhodes. Proc Natl Acad Sci U S A 2008
232
17

Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length.
Christopher L Woodcock, Arthur I Skoultchi, Yuhong Fan. Chromosome Res 2006
301
17

Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes.
Lu Gan, Mark S Ladinsky, Grant J Jensen. Chromosoma 2013
37
45

A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation.
Kazuhiro Maeshima, Tomoki Matsuda, Yutaka Shindo, Hiromi Imamura, Sachiko Tamura, Ryosuke Imai, Syoji Kawakami, Ryosuke Nagashima, Tomoyoshi Soga, Hiroyuki Noji,[...]. Curr Biol 2018
59
28

Coactivator condensation at super-enhancers links phase separation and gene control.
Benjamin R Sabari, Alessandra Dall'Agnese, Ann Boija, Isaac A Klein, Eliot L Coffey, Krishna Shrinivas, Brian J Abraham, Nancy M Hannett, Alicia V Zamudio, John C Manteiga,[...]. Science 2018
729
17

Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs.
Masae Ohno, Tadashi Ando, David G Priest, Vipin Kumar, Yamato Yoshida, Yuichi Taniguchi. Cell 2019
55
30

Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
Alistair N Boettiger, Bogdan Bintu, Jeffrey R Moffitt, Siyuan Wang, Brian J Beliveau, Geoffrey Fudenberg, Maxim Imakaev, Leonid A Mirny, Chao-ting Wu, Xiaowei Zhuang. Nature 2016
401
16

New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
Karolin Luger, Mekonnen L Dechassa, David J Tremethick. Nat Rev Mol Cell Biol 2012
388
16


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.