A citation-based method for searching scientific literature

Juan Martinez, Carlos Pedreira, Matias J Ison, Rodrigo Quian Quiroga. J Neurosci Methods 2009
Times Cited: 47







List of co-cited articles
337 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity



Intracellular features predicted by extracellular recordings in the hippocampus in vivo.
D A Henze, Z Borhegyi, J Csicsvari, A Mamiya, K D Harris, G Buzsáki. J Neurophysiol 2000
483
31

Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements.
K D Harris, D A Henze, J Csicsvari, H Hirase, G Buzsáki. J Neurophysiol 2000
677
31


On the origin of the extracellular action potential waveform: A modeling study.
Carl Gold, Darrell A Henze, Christof Koch, György Buzsáki. J Neurophysiol 2006
276
29

Large-scale recording of neuronal ensembles.
György Buzsáki. Nat Neurosci 2004
839
27

Past, present and future of spike sorting techniques.
Hernan Gonzalo Rey, Carlos Pedreira, Rodrigo Quian Quiroga. Brain Res Bull 2015
129
23

Quality metrics to accompany spike sorting of extracellular signals.
Daniel N Hill, Samar B Mehta, David Kleinfeld. J Neurosci 2011
188
21


A detailed and fast model of extracellular recordings.
Luis A Camuñas-Mesa, Rodrigo Quian Quiroga. Neural Comput 2013
29
34

Model-based analysis of cortical recording with silicon microelectrodes.
Michael A Moffitt, Cameron C McIntyre. Clin Neurophysiol 2005
78
19


Using noise signature to optimize spike-sorting and to assess neuronal classification quality.
Christophe Pouzat, Ofer Mazor, Gilles Laurent. J Neurosci Methods 2002
148
19

Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
Timothy J Blanche, Martin A Spacek, Jamille F Hetke, Nicholas V Swindale. J Neurophysiol 2005
155
19

Towards reliable spike-train recordings from thousands of neurons with multielectrodes.
Gaute T Einevoll, Felix Franke, Espen Hagen, Christophe Pouzat, Kenneth D Harris. Curr Opin Neurobiol 2012
105
19

What is the real shape of extracellular spikes?
R Quian Quiroga. J Neurosci Methods 2009
44
18

Using extracellular action potential recordings to constrain compartmental models.
Carl Gold, Darrell A Henze, Christof Koch. J Comput Neurosci 2007
67
17


How many neurons can we see with current spike sorting algorithms?
Carlos Pedreira, Juan Martinez, Matias J Ison, Rodrigo Quian Quiroga. J Neurosci Methods 2012
46
17


The NEURON simulation environment.
M L Hines, N T Carnevale. Neural Comput 1997
14

Variability of extracellular spike waveforms of cortical neurons.
M S Fee, P P Mitra, D Kleinfeld. J Neurophysiol 1996
122
14

Toward a comparison of microelectrodes for acute and chronic recordings.
Matthew P Ward, Pooja Rajdev, Casey Ellison, Pedro P Irazoqui. Brain Res 2009
161
14

Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices.
U Frey, U Egert, F Heer, S Hafizovic, A Hierlemann. Biosens Bioelectron 2009
108
14

A tool for synthesizing spike trains with realistic interference.
Leslie S Smith, Nhamoinesu Mtetwa. J Neurosci Methods 2007
27
25

Theoretical analysis of intracortical microelectrode recordings.
Scott F Lempka, Matthew D Johnson, Michael A Moffitt, Kevin J Otto, Daryl R Kipke, Cameron C McIntyre. J Neural Eng 2011
56
14

The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
György Buzsáki, Costas A Anastassiou, Christof Koch. Nat Rev Neurosci 2012
14

Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
Antal Berényi, Zoltán Somogyvári, Anett J Nagy, Lisa Roux, John D Long, Shigeyoshi Fujisawa, Eran Stark, Anthony Leonardo, Timothy D Harris, György Buzsáki. J Neurophysiol 2014
158
14


Review of signal distortion through metal microelectrode recording circuits and filters.
Matthew J Nelson, Pierre Pouget, Erik A Nilsen, Craig D Patten, Jeffrey D Schall. J Neurosci Methods 2008
96
12

Massively parallel recording of unit and local field potentials with silicon-based electrodes.
Jozsef Csicsvari, Darrell A Henze, Brian Jamieson, Kenneth D Harris, Anton Sirota, Péter Barthó, Kensall D Wise, György Buzsáki. J Neurophysiol 2003
224
12




Decoding visual inputs from multiple neurons in the human temporal lobe.
R Quian Quiroga, L Reddy, C Koch, I Fried. J Neurophysiol 2007
59
12

Quantitative measures of cluster quality for use in extracellular recordings.
N Schmitzer-Torbert, J Jackson, D Henze, K Harris, A D Redish. Neuroscience 2005
386
12

Spike detection using the continuous wavelet transform.
Zoran Nenadic, Joel W Burdick. IEEE Trans Biomed Eng 2005
133
12

Spike sorting for large, dense electrode arrays.
Cyrille Rossant, Shabnam N Kadir, Dan F M Goodman, John Schulman, Maximilian L D Hunter, Aman B Saleem, Andres Grosmark, Mariano Belluscio, George H Denfield, Alexander S Ecker,[...]. Nat Neurosci 2016
260
12


Dipole characterization of single neurons from their extracellular action potentials.
Ferenc Mechler, Jonathan D Victor. J Comput Neurosci 2012
21
23

Recording spikes from a large fraction of the ganglion cells in a retinal patch.
Ronen Segev, Joe Goodhouse, Jason Puchalla, Michael J Berry. Nat Neurosci 2004
140
10

How silent is the brain: is there a "dark matter" problem in neuroscience?
Shy Shoham, Daniel H O'Connor, Ronen Segev. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006
116
10




Spike sorting.
Rodrigo Quian Quiroga. Curr Biol 2012
40
12

Modeling the spatial reach of the LFP.
Henrik Lindén, Tom Tetzlaff, Tobias C Potjans, Klas H Pettersen, Sonja Grün, Markus Diesmann, Gaute T Einevoll. Neuron 2011
215
10


LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons.
Henrik Lindén, Espen Hagen, Szymon Lęski, Eivind S Norheim, Klas H Pettersen, Gaute T Einevoll. Front Neuroinform 2014
65
10

Control of a brain-computer interface without spike sorting.
George W Fraser, Steven M Chase, Andrew Whitford, Andrew B Schwartz. J Neural Eng 2009
100
10


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.