A citation-based method for searching scientific literature

Agathi-Vassiliki Goula, Brian R Berquist, David M Wilson, Vanessa C Wheeler, Yvon Trottier, Karine Merienne. PLoS Genet 2009
Times Cited: 101







List of co-cited articles
1706 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells.
Irina V Kovtun, Yuan Liu, Magnar Bjoras, Arne Klungland, Samuel H Wilson, Cynthia T McMurray. Nature 2007
320
56


Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion.
Yuan Liu, Rajendra Prasad, William A Beard, Esther W Hou, Julie K Horton, Cynthia T McMurray, Samuel H Wilson. J Biol Chem 2009
86
46

Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes.
Ella Dragileva, Audrey Hendricks, Allison Teed, Tammy Gillis, Edith T Lopez, Errol C Friedberg, Raju Kucherlapati, Winfried Edelmann, Kathryn L Lunetta, Marcy E MacDonald,[...]. Neurobiol Dis 2009
134
34

Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum.
Vanessa C Wheeler, Lori-Anne Lebel, Vladimir Vrbanac, Allison Teed, Hein te Riele, Marcy E MacDonald. Hum Mol Genet 2003
158
33


Repeat instability as the basis for human diseases and as a potential target for therapy.
Arturo López Castel, John D Cleary, Christopher E Pearson. Nat Rev Mol Cell Biol 2010
291
28


Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.
Walther J A A van den Broek, Marcel R Nelen, Derick G Wansink, Marga M Coerwinkel, Hein te Riele, Patricia J T A Groenen, Bé Wieringa. Hum Mol Genet 2002
210
27

(CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.
Barbara A L Owen, Zungyoon Yang, Maoyi Lai, Maciej Gajec, John D Badger, Jeffrey J Hayes, Winfried Edelmann, Raju Kucherlapati, Teresa M Wilson, Cynthia T McMurray. Nat Struct Mol Biol 2005
162
26

Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis.
Laura Kennedy, Elizabeth Evans, Chiung-Mei Chen, Lyndsey Craven, Peter J Detloff, Margaret Ennis, Peggy F Shelbourne. Hum Mol Genet 2003
202
26


Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset.
Meera Swami, Audrey E Hendricks, Tammy Gillis, Tiffany Massood, Jayalakshmi Mysore, Richard H Myers, Vanessa C Wheeler. Hum Mol Genet 2009
157
25

Repeat instability: mechanisms of dynamic mutations.
Christopher E Pearson, Kerrie Nichol Edamura, John D Cleary. Nat Rev Genet 2005
607
23

Transcription promotes contraction of CAG repeat tracts in human cells.
Yunfu Lin, Vincent Dion, John H Wilson. Nat Struct Mol Biol 2006
120
22

CTG repeat instability and size variation timing in DNA repair-deficient mice.
Cédric Savouret, Edith Brisson, Jeroen Essers, Roland Kanaar, Albert Pastink, Hein te Riele, Claudine Junien, Geneviève Gourdon. EMBO J 2003
146
22

Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice.
Laurent Foiry, Li Dong, Cédric Savouret, Laurence Hubert, Hein te Riele, Claudine Junien, Geneviève Gourdon. Hum Genet 2006
100
21

DNA instability in postmitotic neurons.
Roman Gonitel, Hilary Moffitt, Kirupa Sathasivam, Ben Woodman, Peter J Detloff, Richard L M Faull, Gillian P Bates. Proc Natl Acad Sci U S A 2008
132
21

Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain.
Peggy F Shelbourne, Christine Keller-McGandy, Wenya Linda Bi, Song-Ro Yoon, Louis Dubeau, Nicola J Veitch, Jean Paul Vonsattel, Nancy S Wexler, Norman Arnheim, Sarah J Augood. Hum Mol Genet 2007
120
21

Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion.
Mário Gomes-Pereira, M Teresa Fortune, Laura Ingram, John P McAbney, Darren G Monckton. Hum Mol Genet 2004
128
21



Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair.
Gagan B Panigrahi, Rachel Lau, S Erin Montgomery, Michelle R Leonard, Christopher E Pearson. Nat Struct Mol Biol 2005
114
20

Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice.
Linda Møllersen, Alexander D Rowe, Jennifer L Illuzzi, Gunn A Hildrestrand, Katharina J Gerhold, Linda Tveterås, Anja Bjølgerud, David M Wilson, Magnar Bjørås, Arne Klungland. Hum Mol Genet 2012
48
41

MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice.
Stéphanie Tomé, Ian Holt, Winfried Edelmann, Glenn E Morris, Arnold Munnich, Christopher E Pearson, Geneviève Gourdon. PLoS Genet 2009
64
29

Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm.
H Telenius, B Kremer, Y P Goldberg, J Theilmann, S E Andrew, J Zeisler, S Adam, C Greenberg, E J Ives, L A Clarke. Nat Genet 1994
298
19

Structure-dependent DNA damage and repair in a trinucleotide repeat sequence.
Daniel A Jarem, Nicole R Wilson, Sarah Delaney. Biochemistry 2009
52
34

Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1.
Leroy Hubert, Yunfu Lin, Vincent Dion, John H Wilson. Hum Mol Genet 2011
57
31

The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats.
Agathi-Vasiliki Goula, Christopher E Pearson, Julie Della Maria, Yvon Trottier, Alan E Tomkinson, David M Wilson, Karine Merienne. Biochemistry 2012
28
64

Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo.
Irina V Kovtun, Kurt O Johnson, Cynthia T McMurray. Aging (Albany NY) 2011
38
47

Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats.
C Spiro, R Pelletier, M L Rolfsmeier, M J Dixon, R S Lahue, G Gupta, M S Park, X Chen, S V Mariappan, C T McMurray. Mol Cell 1999
141
17

Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired.
Gagan B Panigrahi, Meghan M Slean, Jodie P Simard, Opher Gileadi, Christopher E Pearson. Proc Natl Acad Sci U S A 2010
63
26

Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation.
L Mangiarini, K Sathasivam, A Mahal, R Mott, M Seller, G P Bates. Nat Genet 1997
247
17

MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice.
Cédric Savouret, Corinne Garcia-Cordier, Jérôme Megret, Hein te Riele, Claudine Junien, Geneviève Gourdon. Mol Cell Biol 2004
77
20

Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model.
Ali Entezam, Adihe Rachel Lokanga, Wei Le, Gloria Hoffman, Karen Usdin. Hum Mutat 2010
44
36


MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
Stéphanie Tomé, Kevin Manley, Jodie P Simard, Greg W Clark, Meghan M Slean, Meera Swami, Peggy F Shelbourne, Elisabeth R M Tillier, Darren G Monckton, Anne Messer,[...]. PLoS Genet 2013
80
20

Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.
Ricardo Mouro Pinto, Ella Dragileva, Andrew Kirby, Alejandro Lloret, Edith Lopez, Jason St Claire, Gagan B Panigrahi, Caixia Hou, Kim Holloway, Tammy Gillis,[...]. PLoS Genet 2013
108
16

Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington's Disease.
Helen Budworth, Faye R Harris, Paul Williams, Do Yup Lee, Amy Holt, Jens Pahnke, Bartosz Szczesny, Karina Acevedo-Torres, Sylvette Ayala-Peña, Cynthia T McMurray. PLoS Genet 2015
58
27

Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.
L Mangiarini, K Sathasivam, M Seller, B Cozens, A Harper, C Hetherington, M Lawton, Y Trottier, H Lehrach, S W Davies,[...]. Cell 1996
15

Expansion and length-dependent fragility of CTG repeats in yeast.
C H Freudenreich, S M Kantrow, V A Zakian. Science 1998
340
15


Trinucleotide repeats that expand in human disease form hairpin structures in vitro.
A M Gacy, G Goellner, N Juranić, S Macura, C T McMurray. Cell 1995
465
15

Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse.
V C Wheeler, W Auerbach, J K White, J Srinidhi, A Auerbach, A Ryan, M P Duyao, V Vrbanac, M Weaver, J F Gusella,[...]. Hum Mol Genet 1999
275
14

Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats.
Masayuki Nakamori, Christopher E Pearson, Charles A Thornton. Hum Mol Genet 2011
64
21

DNA base excision repair: a mechanism of trinucleotide repeat expansion.
Yuan Liu, Samuel H Wilson. Trends Biochem Sci 2012
81
17

Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age.
Amanda G Mason, Stephanie Tomé, Jodie P Simard, Randell T Libby, Theodor K Bammler, Richard P Beyer, A Jennifer Morton, Christopher E Pearson, Albert R La Spada. Hum Mol Genet 2014
33
42

Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.
Marina Kovalenko, Ella Dragileva, Jason St Claire, Tammy Gillis, Jolene R Guide, Jaclyn New, Hualing Dong, Raju Kucherlapati, Melanie H Kucherlapati, Michelle E Ehrlich,[...]. PLoS One 2012
42
30

CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination.
Randell T Libby, Katharine A Hagerman, Victor V Pineda, Rachel Lau, Diane H Cho, Sandy L Baccam, Michelle M Axford, John D Cleary, James M Moore, Bryce L Sopher,[...]. PLoS Genet 2008
98
12



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.