A citation-based method for searching scientific literature

Kevin J Ford, Marla B Feller. Vis Neurosci 2012
Times Cited: 32







List of co-cited articles
228 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves.
Kevin J Ford, Aude L Félix, Marla B Feller. J Neurosci 2012
47
37


Mechanisms underlying spontaneous patterned activity in developing neural circuits.
Aaron G Blankenship, Marla B Feller. Nat Rev Neurosci 2010
421
28


Synaptic and extrasynaptic factors governing glutamatergic retinal waves.
Aaron G Blankenship, Kevin J Ford, Juliette Johnson, Rebecca P Seal, Robert H Edwards, David R Copenhagen, Marla B Feller. Neuron 2009
66
25

Mechanisms underlying development of visual maps and receptive fields.
Andrew D Huberman, Marla B Feller, Barbara Chapman. Annu Rev Neurosci 2008
388
25

Retinal waves coordinate patterned activity throughout the developing visual system.
James B Ackman, Timothy J Burbridge, Michael C Crair. Nature 2012
233
25



Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
M B Feller, D P Wellis, D Stellwagen, F S Werblin, C J Shatz. Science 1996
392
21

An instructive role for patterned spontaneous retinal activity in mouse visual map development.
Hong-ping Xu, Moran Furman, Yann S Mineur, Hui Chen, Sarah L King, David Zenisek, Z Jimmy Zhou, Daniel A Butts, Ning Tian, Marina R Picciotto,[...]. Neuron 2011
111
21

Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.
Ben K Stafford, Alexander Sher, Alan M Litke, David A Feldheim. Neuron 2009
88
18



The immune protein CD3zeta is required for normal development of neural circuits in the retina.
Hong-ping Xu, Hui Chen, Qian Ding, Zheng-Hua Xie, Ling Chen, Ling Diao, Ping Wang, Lin Gan, Michael C Crair, Ning Tian. Neuron 2010
53
18

Retinal waves and visual system development.
R O Wong. Annu Rev Neurosci 1999
350
15

Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina.
Ryota L Matsuoka, Kim T Nguyen-Ba-Charvet, Aijaz Parray, Tudor C Badea, Alain Chédotal, Alex L Kolodkin. Nature 2011
141
15

Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor.
Chao Sun, David K Warland, Jose M Ballesteros, Deborah van der List, Leo M Chalupa. Proc Natl Acad Sci U S A 2008
59
15


Intersecting circuits generate precisely patterned retinal waves.
Alejandro Akrouh, Daniel Kerschensteiner. Neuron 2013
31
16

A role for correlated spontaneous activity in the assembly of neural circuits.
Lowry A Kirkby, Georgeann S Sack, Alana Firl, Marla B Feller. Neuron 2013
158
15


GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina.
Chih-Tien Wang, Aaron G Blankenship, Anastasia Anishchenko, Justin Elstrott, Michael Fikhman, Shigetada Nakanishi, Marla B Feller. J Neurosci 2007
41
12


Retinal wave behavior through activity-dependent refractory periods.
Keith B Godfrey, Nicholas V Swindale. PLoS Comput Biol 2007
26
15



Development of asymmetric inhibition underlying direction selectivity in the retina.
Wei Wei, Aaron M Hamby, Kaili Zhou, Marla B Feller. Nature 2011
110
12

A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement.
K Yoshida, D Watanabe, H Ishikane, M Tachibana, I Pastan, S Nakanishi. Neuron 2001
240
12

Direction selectivity in the retina: symmetry and asymmetry in structure and function.
David I Vaney, Benjamin Sivyer, W Rowland Taylor. Nat Rev Neurosci 2012
168
12

Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system.
F M Rossi, T Pizzorusso, V Porciatti, L M Marubio, L Maffei, J P Changeux. Proc Natl Acad Sci U S A 2001
186
12


Competition in retinogeniculate patterning driven by spontaneous activity.
A A Penn, P A Riquelme, M B Feller, C J Shatz. Science 1998
373
12

The major cell populations of the mouse retina.
C J Jeon, E Strettoi, R H Masland. J Neurosci 1998
881
12



Immunocytochemical analysis of the mouse retina.
S Haverkamp, H Wässle. J Comp Neurol 2000
561
12

Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina.
S Sekaran, D Lupi, S L Jones, C J Sheely, S Hattar, K-W Yau, R J Lucas, R G Foster, M W Hankins. Curr Biol 2005
133
12

Phototransduction by retinal ganglion cells that set the circadian clock.
David M Berson, Felice A Dunn, Motoharu Takao. Science 2002
12

Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse.
Alessandro Maccione, Matthias H Hennig, Mauro Gandolfo, Oliver Muthmann, James van Coppenhagen, Stephen J Eglen, Luca Berdondini, Evelyne Sernagor. J Physiol 2014
55
12



Dynamic processes shape spatiotemporal properties of retinal waves.
M B Feller, D A Butts, H L Aaron, D S Rokhsar, C J Shatz. Neuron 1997
120
9


Retinal waves are governed by collective network properties.
D A Butts, M B Feller, C J Shatz, D S Rokhsar. J Neurosci 1999
55
9

Dynamics of retinal waves are controlled by cyclic AMP.
D Stellwagen, C J Shatz, M B Feller. Neuron 1999
103
9

Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation.
Michael Demarque, Alfonso Represa, Hélène Becq, Ilgam Khalilov, Yehezkel Ben-Ari, Laurent Aniksztejn. Neuron 2002
202
9



Morphological properties of mouse retinal ganglion cells during postnatal development.
Julie L Coombs, Deborah Van Der List, Leo M Chalupa. J Comp Neurol 2007
53
9


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.