A citation-based method for searching scientific literature

Gaute T Einevoll, Felix Franke, Espen Hagen, Christophe Pouzat, Kenneth D Harris. Curr Opin Neurobiol 2012
Times Cited: 105







List of co-cited articles
758 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements.
K D Harris, D A Henze, J Csicsvari, H Hirase, G Buzsáki. J Neurophysiol 2000
682
47


Large-scale recording of neuronal ensembles.
György Buzsáki. Nat Neurosci 2004
852
42


Spike sorting for large, dense electrode arrays.
Cyrille Rossant, Shabnam N Kadir, Dan F M Goodman, John Schulman, Maximilian L D Hunter, Aman B Saleem, Andres Grosmark, Mariano Belluscio, George H Denfield, Alexander S Ecker,[...]. Nat Neurosci 2016
269
31

Intracellular features predicted by extracellular recordings in the hippocampus in vivo.
D A Henze, Z Borhegyi, J Csicsvari, A Mamiya, K D Harris, G Buzsáki. J Neurophysiol 2000
488
24

Quality metrics to accompany spike sorting of extracellular signals.
Daniel N Hill, Samar B Mehta, David Kleinfeld. J Neurosci 2011
191
24

The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
György Buzsáki, Costas A Anastassiou, Christof Koch. Nat Rev Neurosci 2012
24

Past, present and future of spike sorting techniques.
Hernan Gonzalo Rey, Carlos Pedreira, Rodrigo Quian Quiroga. Brain Res Bull 2015
132
24

On the origin of the extracellular action potential waveform: A modeling study.
Carl Gold, Darrell A Henze, Christof Koch, György Buzsáki. J Neurophysiol 2006
279
22

Mapping a complete neural population in the retina.
Olivier Marre, Dario Amodei, Nikhil Deshmukh, Kolia Sadeghi, Frederick Soo, Timothy E Holy, Michael J Berry. J Neurosci 2012
88
25


A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
Jonathan W Pillow, Jonathon Shlens, E J Chichilnisky, Eero P Simoncelli. PLoS One 2013
60
35

An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes.
Felix Franke, Michal Natora, Clemens Boucsein, Matthias H J Munk, Klaus Obermayer. J Comput Neurosci 2010
69
28

A Fully Automated Approach to Spike Sorting.
Jason E Chung, Jeremy F Magland, Alex H Barnett, Vanessa M Tolosa, Angela C Tooker, Kye Y Lee, Kedar G Shah, Sarah H Felix, Loren M Frank, Leslie F Greengard. Neuron 2017
110
19

A unified framework and method for automatic neural spike identification.
Chaitanya Ekanadham, Daniel Tranchina, Eero P Simoncelli. J Neurosci Methods 2014
31
54

Quantitative measures of cluster quality for use in extracellular recordings.
N Schmitzer-Torbert, J Jackson, D Henze, K Harris, A D Redish. Neuroscience 2005
393
16

Massively parallel recording of unit and local field potentials with silicon-based electrodes.
Jozsef Csicsvari, Darrell A Henze, Brian Jamieson, Kenneth D Harris, Anton Sirota, Péter Barthó, Kensall D Wise, György Buzsáki. J Neurophysiol 2003
225
16

Using noise signature to optimize spike-sorting and to assess neuronal classification quality.
Christophe Pouzat, Ofer Mazor, Gilles Laurent. J Neurosci Methods 2002
149
16

Bayes optimal template matching for spike sorting - combining fisher discriminant analysis with optimal filtering.
Felix Franke, Rodrigo Quian Quiroga, Andreas Hierlemann, Klaus Obermayer. J Comput Neurosci 2015
44
36

Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
Antal Berényi, Zoltán Somogyvári, Anett J Nagy, Lisa Roux, John D Long, Shigeyoshi Fujisawa, Eran Stark, Anthony Leonardo, Timothy D Harris, György Buzsáki. J Neurophysiol 2014
160
16

High-dimensional cluster analysis with the masked EM algorithm.
Shabnam N Kadir, Dan F M Goodman, Kenneth D Harris. Neural Comput 2014
147
16

Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices.
U Frey, U Egert, F Heer, S Hafizovic, A Hierlemann. Biosens Bioelectron 2009
109
15

Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
Timothy J Blanche, Martin A Spacek, Jamille F Hetke, Nicholas V Swindale. J Neurophysiol 2005
155
15

High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity.
Felix Franke, David Jäckel, Jelena Dragas, Jan Müller, Milos Radivojevic, Douglas Bakkum, Andreas Hierlemann. Front Neural Circuits 2012
53
28


Fast, scalable, Bayesian spike identification for multi-electrode arrays.
Jason S Prentice, Jan Homann, Kristina D Simmons, Gašper Tkačik, Vijay Balasubramanian, Philip C Nelson. PLoS One 2011
41
34

Applicability of independent component analysis on high-density microelectrode array recordings.
David Jäckel, Urs Frey, Michele Fiscella, Felix Franke, Andreas Hierlemann. J Neurophysiol 2012
39
35

A detailed and fast model of extracellular recordings.
Luis A Camuñas-Mesa, Rodrigo Quian Quiroga. Neural Comput 2013
29
48

A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo.
Pierre Yger, Giulia Lb Spampinato, Elric Esposito, Baptiste Lefebvre, Stéphane Deny, Christophe Gardella, Marcel Stimberg, Florian Jetter, Guenther Zeck, Serge Picaud,[...]. Elife 2018
73
19



Modelling and analysis of local field potentials for studying the function of cortical circuits.
Gaute T Einevoll, Christoph Kayser, Nikos K Logothetis, Stefano Panzeri. Nat Rev Neurosci 2013
336
13


Recording spikes from a large fraction of the ganglion cells in a retinal patch.
Ronen Segev, Joe Goodhouse, Jason Puchalla, Michael J Berry. Nat Neurosci 2004
140
12


Variability of extracellular spike waveforms of cortical neurons.
M S Fee, P P Mitra, D Kleinfeld. J Neurophysiol 1996
122
12

How advances in neural recording affect data analysis.
Ian H Stevenson, Konrad P Kording. Nat Neurosci 2011
207
12

Multi-electrode array technologies for neuroscience and cardiology.
Micha E Spira, Aviad Hai. Nat Nanotechnol 2013
370
12

LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons.
Henrik Lindén, Espen Hagen, Szymon Lęski, Eivind S Norheim, Klas H Pettersen, Gaute T Einevoll. Front Neuroinform 2014
67
17

ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
Espen Hagen, Torbjørn V Ness, Amir Khosrowshahi, Christina Sørensen, Marianne Fyhn, Torkel Hafting, Felix Franke, Gaute T Einevoll. J Neurosci Methods 2015
22
54

Validating silicon polytrodes with paired juxtacellular recordings: method and dataset.
Joana P Neto, Gonçalo Lopes, João Frazão, Joana Nogueira, Pedro Lacerda, Pedro Baião, Arno Aarts, Alexandru Andrei, Silke Musa, Elvira Fortunato,[...]. J Neurophysiol 2016
36
33

Fully integrated silicon probes for high-density recording of neural activity.
James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın,[...]. Nature 2017
479
12

The NEURON simulation environment.
M L Hines, N T Carnevale. Neural Comput 1997
11

Modeling the spatial reach of the LFP.
Henrik Lindén, Tom Tetzlaff, Tobias C Potjans, Klas H Pettersen, Sonja Grün, Markus Diesmann, Gaute T Einevoll. Neuron 2011
221
11

How many neurons can we see with current spike sorting algorithms?
Carlos Pedreira, Juan Martinez, Matias J Ison, Rodrigo Quian Quiroga. J Neurosci Methods 2012
46
23

Spike sorting for polytrodes: a divide and conquer approach.
Nicholas V Swindale, Martin A Spacek. Front Syst Neurosci 2014
28
39

Tools for probing local circuits: high-density silicon probes combined with optogenetics.
György Buzsáki, Eran Stark, Antal Berényi, Dion Khodagholy, Daryl R Kipke, Euisik Yoon, Kensall D Wise. Neuron 2015
127
11


Improving data quality in neuronal population recordings.
Kenneth D Harris, Rodrigo Quian Quiroga, Jeremy Freeman, Spencer L Smith. Nat Neurosci 2016
88
12


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.