A citation-based method for searching scientific literature

Jonathan B Demb, Joshua H Singer. Vis Neurosci 2012
Times Cited: 93







List of co-cited articles
1123 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight.
Michael B Manookin, Deborah Langrill Beaudoin, Zachary Raymond Ernst, Leigh J Flagel, Jonathan B Demb. J Neurosci 2008
161
34

The neuronal organization of the retina.
Richard H Masland. Neuron 2012
416
27


Approach sensitivity in the retina processed by a multifunctional neural circuit.
Thomas A Münch, Rava Azeredo da Silveira, Sandra Siegert, Tim James Viney, Gautam B Awatramani, Botond Roska. Nat Neurosci 2009
186
24

Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Moritz Helmstaedter, Kevin L Briggman, Srinivas C Turaga, Viren Jain, H Sebastian Seung, Winfried Denk. Nature 2013
421
23

Cone contacts, mosaics, and territories of bipolar cells in the mouse retina.
Heinz Wässle, Christian Puller, Frank Müller, Silke Haverkamp. J Neurosci 2009
275
22


Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina.
Michael R Deans, Bela Volgyi, Daniel A Goodenough, Stewart A Bloomfield, David L Paul. Neuron 2002
301
18



Parallel processing in the mammalian retina.
Heinz Wässle. Nat Rev Neurosci 2004
661
17



Microcircuits for night vision in mouse retina.
Y Tsukamoto, K Morigiwa, M Ueda, P Sterling. J Neurosci 2001
224
17

Receptive field properties of ON- and OFF-ganglion cells in the mouse retina.
Michiel van Wyk, Heinz Wässle, W Rowland Taylor. Vis Neurosci 2009
109
17

Retinal bipolar cells: elementary building blocks of vision.
Thomas Euler, Silke Haverkamp, Timm Schubert, Tom Baden. Nat Rev Neurosci 2014
182
17

The functional diversity of retinal ganglion cells in the mouse.
Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, Thomas Euler. Nature 2016
372
17

Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron.
William N Grimes, Jun Zhang, Cole W Graydon, Bechara Kachar, Jeffrey S Diamond. Neuron 2010
92
16


Rod vision: pathways and processing in the mammalian retina.
S A Bloomfield, R F Dacheux. Prog Retin Eye Res 2001
231
16

Wiring specificity in the direction-selectivity circuit of the retina.
Kevin L Briggman, Moritz Helmstaedter, Winfried Denk. Nature 2011
469
16

Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina.
Bart G Borghuis, Jonathan S Marvin, Loren L Looger, Jonathan B Demb. J Neurosci 2013
106
16



The mechanisms of repetitive spike generation in an axonless retinal interneuron.
Mark S Cembrowski, Stephen M Logan, Miao Tian, Li Jia, Wei Li, William L Kath, Hermann Riecke, Joshua H Singer. Cell Rep 2012
29
44

Convergence and segregation of the multiple rod pathways in mammalian retina.
Béla Völgyi, Michael R Deans, David L Paul, Stewart A Bloomfield. J Neurosci 2004
125
13

The most numerous ganglion cell type of the mouse retina is a selective feature detector.
Yifeng Zhang, In-Jung Kim, Joshua R Sanes, Markus Meister. Proc Natl Acad Sci U S A 2012
154
13

Direction selectivity in the retina: symmetry and asymmetry in structure and function.
David I Vaney, Benjamin Sivyer, W Rowland Taylor. Nat Rev Neurosci 2012
169
13

The tasks of amacrine cells.
Richard H Masland. Vis Neurosci 2012
68
19


Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold.
Karl Farrow, Miguel Teixeira, Tamas Szikra, Tim J Viney, Kamill Balint, Keisuke Yonehara, Botond Roska. Neuron 2013
89
14


Directionally selective calcium signals in dendrites of starburst amacrine cells.
Thomas Euler, Peter B Detwiler, Winfried Denk. Nature 2002
355
12


Adaptation to background light enables contrast coding at rod bipolar cell synapses.
Jiang-Bin Ke, Yanbin V Wang, Bart G Borghuis, Mark S Cembrowski, Hermann Riecke, William L Kath, Jonathan B Demb, Joshua H Singer. Neuron 2014
48
25

The AII amacrine cell connectome: a dense network hub.
Robert E Marc, James R Anderson, Bryan W Jones, Crystal L Sigulinsky, James S Lauritzen. Front Neural Circuits 2014
45
26

The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning.
M L Applebury, M P Antoch, L C Baxter, L L Chun, J D Falk, F Farhangfar, K Kage, M G Krzystolik, L A Lyass, J T Robbins. Neuron 2000
392
11

Exploring the retinal connectome.
James R Anderson, Bryan W Jones, Carl B Watt, Margaret V Shaw, Jia-Hui Yang, David Demill, James S Lauritzen, Yanhua Lin, Kevin D Rapp, David Mastronarde,[...]. Mol Vis 2011
105
11

Controlling the gain of rod-mediated signals in the Mammalian retina.
Felice A Dunn, Thuy Doan, Alapakkam P Sampath, Fred Rieke. J Neurosci 2006
127
11

Glycinergic amacrine cells of the rat retina.
N Menger, D V Pow, H Wässle. J Comp Neurol 1998
165
11


The spatial structure of a nonlinear receptive field.
Gregory W Schwartz, Haruhisa Okawa, Felice A Dunn, Josh L Morgan, Daniel Kerschensteiner, Rachel O Wong, Fred Rieke. Nat Neurosci 2012
119
11

Spikes in mammalian bipolar cells support temporal layering of the inner retina.
Tom Baden, Philipp Berens, Matthias Bethge, Thomas Euler. Curr Biol 2013
83
13



Tracer coupling patterns of the ganglion cell subtypes in the mouse retina.
Béla Völgyi, Samir Chheda, Stewart A Bloomfield. J Comp Neurol 2009
203
10


The major cell populations of the mouse retina.
C J Jeon, E Strettoi, R H Masland. J Neurosci 1998
882
10

Populations of wide-field amacrine cells in the mouse retina.
Bin Lin, Richard H Masland. J Comp Neurol 2006
63
15

Control of dopamine release in the retina: a transgenic approach to neural networks.
S Gustincich, A Feigenspan, D K Wu, L J Koopman, E Raviola. Neuron 1997
181
10


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.