A citation-based method for searching scientific literature

Nadja Schinkel-Bielefeld, Stephen V David, Shihab A Shamma, Daniel A Butts. J Neurophysiol 2012
Times Cited: 17







List of co-cited articles
219 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Optimizing sound features for cortical neurons.
R C deCharms, D T Blake, M M Merzenich. Science 1998
306
70

Spectrotemporal contrast kernels for neurons in primary auditory cortex.
Neil C Rabinowitz, Ben D B Willmore, Jan W H Schnupp, Andrew J King. J Neurosci 2012
42
64

Cooperative nonlinearities in auditory cortical neurons.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. Neuron 2008
86
64

Linearity of cortical receptive fields measured with natural sounds.
Christian K Machens, Michael S Wehr, Anthony M Zador. J Neurosci 2004
194
64


Sound representation methods for spectro-temporal receptive field estimation.
Patrick Gill, Junli Zhang, Sarah M N Woolley, Thane Fremouw, Frédéric E Theunissen. J Comput Neurosci 2006
60
52


A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
Ana Calabrese, Joseph W Schumacher, David M Schneider, Liam Paninski, Sarah M N Woolley. PLoS One 2011
68
47

Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
D J Klein, D A Depireux, J Z Simon, S A Shamma. J Comput Neurosci 2000
154
47

Integration over multiple timescales in primary auditory cortex.
Stephen V David, Shihab A Shamma. J Neurosci 2013
40
47

Contrast gain control in auditory cortex.
Neil C Rabinowitz, Ben D B Willmore, Jan W H Schnupp, Andrew J King. Neuron 2011
131
47

Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex.
Jonathan Fritz, Shihab Shamma, Mounya Elhilali, David Klein. Nat Neurosci 2003
496
47

Analyzing neural responses to natural signals: maximally informative dimensions.
Tatyana Sharpee, Nicole C Rust, William Bialek. Neural Comput 2004
179
41

Processing of low-probability sounds by cortical neurons.
Nachum Ulanovsky, Liora Las, Israel Nelken. Nat Neurosci 2003
632
41

Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.
F E Theunissen, S V David, N C Singh, A Hsu, W E Vinje, J L Gallant. Network 2001
215
41



The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
G Björn Christianson, Maneesh Sahani, Jennifer F Linden. J Neurosci 2008
82
41

Complete functional characterization of sensory neurons by system identification.
Michael C-K Wu, Stephen V David, Jack L Gallant. Annu Rev Neurosci 2006
166
35



Estimating sparse spectro-temporal receptive fields with natural stimuli.
Stephen V David, Nima Mesgarani, Shihab A Shamma. Network 2007
73
35

Inferring nonlinear neuronal computation based on physiologically plausible inputs.
James M McFarland, Yuwei Cui, Daniel A Butts. PLoS Comput Biol 2013
75
35


Spatio-temporal correlations and visual signalling in a complete neuronal population.
Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, E J Chichilnisky, Eero P Simoncelli. Nature 2008
590
29

Inferring input nonlinearities in neural encoding models.
Misha B Ahrens, Liam Paninski, Maneesh Sahani. Network 2008
50
29



Spike-triggered neural characterization.
Odelia Schwartz, Jonathan W Pillow, Nicole C Rust, Eero P Simoncelli. J Vis 2006
238
29


Task reward structure shapes rapid receptive field plasticity in auditory cortex.
Stephen V David, Jonathan B Fritz, Shihab A Shamma. Proc Natl Acad Sci U S A 2012
145
29

Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
Jennifer F Linden, Robert C Liu, Maneesh Sahani, Christoph E Schreiner, Michael M Merzenich. J Neurophysiol 2003
154
29

Neural population coding of sound level adapts to stimulus statistics.
Isabel Dean, Nicol S Harper, David McAlpine. Nat Neurosci 2005
307
29


Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.
Lee M Miller, Monty A Escabí, Heather L Read, Christoph E Schreiner. J Neurophysiol 2002
218
29

Constructing noise-invariant representations of sound in the auditory pathway.
Neil C Rabinowitz, Ben D B Willmore, Andrew J King, Jan W H Schnupp. PLoS Biol 2013
68
29

The Essential Complexity of Auditory Receptive Fields.
Ivar L Thorson, Jean Liénard, Stephen V David. PLoS Comput Biol 2015
20
29

Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
Ben D B Willmore, Oliver Schoppe, Andrew J King, Jan W H Schnupp, Nicol S Harper. J Neurosci 2016
23
29

Input-Specific Gain Modulation by Local Sensory Context Shapes Cortical and Thalamic Responses to Complex Sounds.
Ross S Williamson, Misha B Ahrens, Jennifer F Linden, Maneesh Sahani. Neuron 2016
30
29

Organization of response areas in ferret primary auditory cortex.
S A Shamma, J W Fleshman, P R Wiser, H Versnel. J Neurophysiol 1993
185
23

Predicting neuronal responses during natural vision.
Stephen V David, Jack L Gallant. Network 2005
89
23

Spatiotemporal elements of macaque v1 receptive fields.
Nicole C Rust, Odelia Schwartz, J Anthony Movshon, Eero P Simoncelli. Neuron 2005
265
23



Neural networks with dynamic synapses.
M Tsodyks, K Pawelzik, H Markram. Neural Comput 1998
367
23

Sensitivity to complex statistical regularities in rat auditory cortex.
Amit Yaron, Itai Hershenhoren, Israel Nelken. Neuron 2012
100
23

Multiple time scales of adaptation in auditory cortex neurons.
Nachum Ulanovsky, Liora Las, Dina Farkas, Israel Nelken. J Neurosci 2004
430
23

Modulation spectra of natural sounds and ethological theories of auditory processing.
Nandini C Singh, Frédéric E Theunissen. J Acoust Soc Am 2003
259
23

Rapid neural adaptation to sound level statistics.
Isabel Dean, Ben L Robinson, Nicol S Harper, David McAlpine. J Neurosci 2008
124
23

Receptive field dimensionality increases from the auditory midbrain to cortex.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. J Neurophysiol 2012
39
23


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.