A citation-based method for searching scientific literature


List of co-cited articles
76 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity





Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing.
Michal Rivlin-Etzion, Kaili Zhou, Wei Wei, Justin Elstrott, Phong L Nguyen, Ben A Barres, Andrew D Huberman, Marla B Feller. J Neurosci 2011
128
44

Dynamic tuning of electrical and chemical synaptic transmission in a network of motion coding retinal neurons.
Stuart Trenholm, Amanda J McLaughlin, David J Schwab, Gautam B Awatramani. J Neurosci 2013
29
44

Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision.
Jennifer L Ecker, Olivia N Dumitrescu, Kwoon Y Wong, Nazia M Alam, Shih-Kuo Chen, Tara LeGates, Jordan M Renna, Glen T Prusky, David M Berson, Samer Hattar. Neuron 2010
381
33

Direction selectivity in the retina: symmetry and asymmetry in structure and function.
David I Vaney, Benjamin Sivyer, W Rowland Taylor. Nat Rev Neurosci 2012
168
33

Synaptic inputs and timing underlying the velocity tuning of direction-selective ganglion cells in rabbit retina.
Benjamin Sivyer, Michiel van Wyk, David I Vaney, W Rowland Taylor. J Physiol 2010
30
33

Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion.
Andrew D Huberman, Wei Wei, Justin Elstrott, Ben K Stafford, Marla B Feller, Ben A Barres. Neuron 2009
247
33

The diverse functional roles and regulation of neuronal gap junctions in the retina.
Stewart A Bloomfield, Béla Völgyi. Nat Rev Neurosci 2009
235
33

Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina.
Timm Schubert, Stephan Maxeiner, Olaf Krüger, Klaus Willecke, Reto Weiler. J Comp Neurol 2005
67
33


Sensory experience shapes the development of the visual system's first synapse.
Felice A Dunn, Luca Della Santina, Edward D Parker, Rachel O L Wong. Neuron 2013
42
33


Development of asymmetric inhibition underlying direction selectivity in the retina.
Wei Wei, Aaron M Hamby, Kaili Zhou, Marla B Feller. Nature 2011
110
33

Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves.
Justin Elstrott, Anastasia Anishchenko, Martin Greschner, Alexander Sher, Alan M Litke, E J Chichilnisky, Marla B Feller. Neuron 2008
92
33

Development of direction selectivity in mouse cortical neurons.
Nathalie L Rochefort, Madoka Narushima, Christine Grienberger, Nima Marandi, Daniel N Hill, Arthur Konnerth. Neuron 2011
106
33

Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity.
Keisuke Yonehara, Michele Fiscella, Antonia Drinnenberg, Federico Esposti, Stuart Trenholm, Jacek Krol, Felix Franke, Brigitte Gross Scherf, Akos Kusnyerik, Jan Müller,[...]. Neuron 2016
62
33

Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina.
Minggang Chen, Shijun Weng, Qiudong Deng, Zhen Xu, Shigang He. J Physiol 2009
40
33


Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.
Jeremy N Kay, Irina De la Huerta, In-Jung Kim, Yifeng Zhang, Masahito Yamagata, Monica W Chu, Markus Meister, Joshua R Sanes. J Neurosci 2011
200
22

Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit.
Jessica A Osterhout, Nicko Josten, Jena Yamada, Feng Pan, Shaw-wen Wu, Phong L Nguyen, Georgia Panagiotakos, Yukiko U Inoue, Saki F Egusa, Bela Volgyi,[...]. Neuron 2011
100
22

Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision.
Maureen E Estevez, P Michelle Fogerson, Marissa C Ilardi, Bart G Borghuis, Eric Chan, Shijun Weng, Olivia N Auferkorte, Jonathan B Demb, David M Berson. J Neurosci 2012
145
22

ON direction-selective ganglion cells in the mouse retina.
Wenzhi Sun, Qiudong Deng, William R Levick, Shigang He. J Physiol 2006
58
22


Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion.
Keisuke Yonehara, Hiroshi Ishikane, Hiraki Sakuta, Takafumi Shintani, Kayo Nakamura-Yonehara, Nilton L Kamiji, Shiro Usui, Masaharu Noda. PLoS One 2009
104
22

Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice.
David M Berson, Ana Maria Castrucci, Ignacio Provencio. J Comp Neurol 2010
137
22



Gap junctions between photoreceptor cells in the vertebrate retina.
E Raviola, N B Gilula. Proc Natl Acad Sci U S A 1973
285
22

Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina.
G Casini, D W Rickman, L Trasarti, N C Brecha. Brain Res Dev Brain Res 1998
28
22

Tracer coupling patterns of the ganglion cell subtypes in the mouse retina.
Béla Völgyi, Samir Chheda, Stewart A Bloomfield. J Comp Neurol 2009
203
22

Neuronal coupling in the developing mammalian retina.
A A Penn, R O Wong, C J Shatz. J Neurosci 1994
118
22

Rod pathways in the mammalian retina use connexin 36.
S L Mills, J J O'Brien, W Li, J O'Brien, S C Massey. J Comp Neurol 2001
114
22

Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina.
Alexandre Hiroaki Kihara, Leandro Mantovani de Castro, Mônica Aparecida Belmonte, Chao Yun Irene Yan, Anselmo Sigari Moriscot, Dânia Emi Hamassaki. J Neurobiol 2006
31
22

Calretinin in neurochemically well-defined cell populations of rabbit retina.
B Völgyi, E Pollak, P Buzás, R Gábriel. Brain Res 1997
52
22

Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells.
Béla Völgyi, Feng Pan, David L Paul, Jack T Wang, Andrew D Huberman, Stewart A Bloomfield. PLoS One 2013
43
22

The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.
Aaron G Blankenship, Aaron M Hamby, Alana Firl, Shri Vyas, Stephan Maxeiner, Klaus Willecke, Marla B Feller. J Neurosci 2011
42
22

Function and plasticity of homologous coupling between AII amacrine cells.
Stewart A Bloomfield, Béla Völgyi. Vision Res 2004
67
22

Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart.
Marina Frank, Britta Eiberger, Ulrike Janssen-Bienhold, Luis Pérez de Sevilla Müller, Antje Tjarks, Jung-Sun Kim, Stefan Maschke, Radoslaw Dobrowolski, Philipp Sasse, Reto Weiler,[...]. J Cell Sci 2010
20
22

Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina.
Béla Völgyi, Joseph Abrams, David L Paul, Stewart A Bloomfield. J Comp Neurol 2005
66
22

Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina.
Michael R Deans, Bela Volgyi, Daniel A Goodenough, Stewart A Bloomfield, David L Paul. Neuron 2002
300
22

The neuronal organization of the retina.
Richard H Masland. Neuron 2012
411
22


Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization.
Onkar S Dhande, Maureen E Estevez, Lauren E Quattrochi, Rana N El-Danaf, Phong L Nguyen, David M Berson, Andrew D Huberman. J Neurosci 2013
97
22


The development of cortical circuits for motion discrimination.
Gordon B Smith, Audrey Sederberg, Yishai M Elyada, Stephen D Van Hooser, Matthias Kaschube, David Fitzpatrick. Nat Neurosci 2015
40
22


Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit.
Keisuke Yonehara, Kamill Balint, Masaharu Noda, Georg Nagel, Ernst Bamberg, Botond Roska. Nature 2011
104
22

Wiring specificity in the direction-selectivity circuit of the retina.
Kevin L Briggman, Moritz Helmstaedter, Winfried Denk. Nature 2011
467
22


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.