A citation-based method for searching scientific literature

Onkar S Dhande, Andrew D Huberman. Curr. Opin. Neurobiol. 2014
Times Cited: 91







List of co-cited articles
888 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells.
Andrew D Huberman, Mihai Manu, Selina M Koch, Michael W Susman, Amanda Brosius Lutz, Erik M Ullian, Stephen A Baccus, Ben A Barres. Neuron 2008
179
34

Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion.
Andrew D Huberman, Wei Wei, Justin Elstrott, Ben K Stafford, Marla B Feller, Ben A Barres. Neuron 2009
233
34


The functional diversity of retinal ganglion cells in the mouse.
Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, Thomas Euler. Nature 2016
288
28

Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.
Jeremy N Kay, Irina De la Huerta, In-Jung Kim, Yifeng Zhang, Masahito Yamagata, Monica W Chu, Markus Meister, Joshua R Sanes. J. Neurosci. 2011
183
27


Molecular identification of a retinal cell type that responds to upward motion.
In-Jung Kim, Yifeng Zhang, Masahito Yamagata, Markus Meister, Joshua R Sanes. Nature 2008
246
25

Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing.
Michal Rivlin-Etzion, Kaili Zhou, Wei Wei, Justin Elstrott, Phong L Nguyen, Ben A Barres, Andrew D Huberman, Marla B Feller. J. Neurosci. 2011
117
24

Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization.
Onkar S Dhande, Maureen E Estevez, Lauren E Quattrochi, Rana N El-Danaf, Phong L Nguyen, David M Berson, Andrew D Huberman. J. Neurosci. 2013
87
22

A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex.
Alberto Cruz-Martín, Rana N El-Danaf, Fumitaka Osakada, Balaji Sriram, Onkar S Dhande, Phong L Nguyen, Edward M Callaway, Anirvan Ghosh, Andrew D Huberman. Nature 2014
147
20

Diverse visual features encoded in mouse lateral geniculate nucleus.
Denise M Piscopo, Rana N El-Danaf, Andrew D Huberman, Cristopher M Niell. J. Neurosci. 2013
162
20

The most numerous ganglion cell type of the mouse retina is a selective feature detector.
Yifeng Zhang, In-Jung Kim, Joshua R Sanes, Markus Meister. Proc. Natl. Acad. Sci. U.S.A. 2012
134
19

The neuronal organization of the retina.
Richard H Masland. Neuron 2012
356
17

Visual receptive field properties of neurons in the superficial superior colliculus of the mouse.
Lupeng Wang, Rashmi Sarnaik, Krsna Rangarajan, Xiaorong Liu, Jianhua Cang. J. Neurosci. 2010
100
16

Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types.
Adam Bleckert, Gregory W Schwartz, Maxwell H Turner, Fred Rieke, Rachel O L Wong. Curr. Biol. 2014
100
15


Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit.
Jessica A Osterhout, Nicko Josten, Jena Yamada, Feng Pan, Shaw-wen Wu, Phong L Nguyen, Georgia Panagiotakos, Yukiko U Inoue, Saki F Egusa, Bela Volgyi,[...]. Neuron 2011
89
15

A genetic and computational approach to structurally classify neuronal types.
Uygar Sümbül, Sen Song, Kyle McCulloch, Michael Becker, Bin Lin, Joshua R Sanes, Richard H Masland, H Sebastian Seung. Nat Commun 2014
85
15

Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion.
Keisuke Yonehara, Hiroshi Ishikane, Hiraki Sakuta, Takafumi Shintani, Kayo Nakamura-Yonehara, Nilton L Kamiji, Shiro Usui, Masaharu Noda. PLoS ONE 2009
95
14

Retinofugal projections in the mouse.
Lawrence P Morin, Keith M Studholme. J. Comp. Neurol. 2014
84
15

The accessory optic system.
J I Simpson. Annu. Rev. Neurosci. 1984
305
14

Developmental mechanisms of topographic map formation and alignment.
Jianhua Cang, David A Feldheim. Annu. Rev. Neurosci. 2013
103
14


Central projections of melanopsin-expressing retinal ganglion cells in the mouse.
Samer Hattar, Monica Kumar, Alexander Park, Patrick Tong, Jonathan Tung, King-Wai Yau, David M Berson. J. Comp. Neurol. 2006
498
13


Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus.
James H Marshel, Alfred P Kaye, Ian Nauhaus, Edward M Callaway. Neuron 2012
97
13

Tracer coupling patterns of the ganglion cell subtypes in the mouse retina.
Béla Völgyi, Samir Chheda, Stewart A Bloomfield. J. Comp. Neurol. 2009
189
12

Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse.
Thomas E Krahe, Rana N El-Danaf, Emily K Dilger, Scott C Henderson, William Guido. J. Neurosci. 2011
63
17

Direction selectivity in the retina: symmetry and asymmetry in structure and function.
David I Vaney, Benjamin Sivyer, W Rowland Taylor. Nat. Rev. Neurosci. 2012
151
12

Orientation-selective responses in the mouse lateral geniculate nucleus.
Xinyu Zhao, Hui Chen, Xiaorong Liu, Jianhua Cang. J. Neurosci. 2013
76
14

Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus.
Erika M Ellis, Gregory Gauvain, Benjamin Sivyer, Gabe J Murphy. J. Neurophysiol. 2016
55
20

Diverse Central Projection Patterns of Retinal Ganglion Cells.
Emily M Martersteck, Karla E Hirokawa, Mariah Evarts, Amy Bernard, Xin Duan, Yang Li, Lydia Ng, Seung W Oh, Benjamin Ouellette, Joshua J Royall,[...]. Cell Rep 2017
52
21


Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision.
Jennifer L Ecker, Olivia N Dumitrescu, Kwoon Y Wong, Nazia M Alam, Shih-Kuo Chen, Tara LeGates, Jordan M Renna, Glen T Prusky, David M Berson, Samer Hattar. Neuron 2010
313
10


Reelin is required for class-specific retinogeniculate targeting.
Jianmin Su, Cheryl V Haner, Terence E Imbery, Justin M Brooks, Duncan R Morhardt, Karen Gorse, William Guido, Michael A Fox. J. Neurosci. 2011
35
28

Structural and functional composition of the developing retinogeniculate pathway in the mouse.
Lisa Jaubert-Miazza, Erick Green, Fu-Sun Lo, Kim Bui, Jeremy Mills, William Guido. Vis. Neurosci. 2005
145
10

Wiring and rewiring of the retinogeniculate synapse.
Y Kate Hong, Chinfei Chen. Curr. Opin. Neurobiol. 2011
65
15


Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway.
Jessica A Osterhout, Rana N El-Danaf, Phong L Nguyen, Andrew D Huberman. Cell Rep 2014
44
22

Mechanisms underlying development of visual maps and receptive fields.
Andrew D Huberman, Marla B Feller, Barbara Chapman. Annu. Rev. Neurosci. 2008
361
10


Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus.
Y Kate Hong, In-Jung Kim, Joshua R Sanes. J. Comp. Neurol. 2011
54
16

Development of single retinofugal axon arbors in normal and β2 knock-out mice.
Onkar S Dhande, Ethan W Hua, Emily Guh, Jonathan Yeh, Shivani Bhatt, Yueyi Zhang, Edward S Ruthazer, Marla B Feller, Michael C Crair. J. Neurosci. 2011
73
12

Tbr2 is required to generate a neural circuit mediating the pupillary light reflex.
Neal T Sweeney, Hannah Tierney, David A Feldheim. J. Neurosci. 2014
33
27

Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.
Jason W Triplett, Wei Wei, Cristina Gonzalez, Neal T Sweeney, Andrew D Huberman, Marla B Feller, David A Feldheim. Neural Dev 2014
32
28

Wiring specificity in the direction-selectivity circuit of the retina.
Kevin L Briggman, Moritz Helmstaedter, Winfried Denk. Nature 2011
436
9

Parametric functional maps of visual inputs to the tectum.
Nikolas Nikolaou, Andrew S Lowe, Alison S Walker, Fatima Abbas, Paul R Hunter, Ian D Thompson, Martin P Meyer. Neuron 2012
81
11


Rapid innate defensive responses of mice to looming visual stimuli.
Melis Yilmaz, Markus Meister. Curr. Biol. 2013
144
9


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.