A citation-based method for searching scientific literature

Tamás Kovács-Öller, Katalin Raics, József Orbán, Miklós Nyitrai, Béla Völgyi. Cell Tissue Res 2014
Times Cited: 8







List of co-cited articles
73 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


The diverse functional roles and regulation of neuronal gap junctions in the retina.
Stewart A Bloomfield, Béla Völgyi. Nat Rev Neurosci 2009
241
75

Rod pathways in the mammalian retina use connexin 36.
S L Mills, J J O'Brien, W Li, J O'Brien, S C Massey. J Comp Neurol 2001
115
75

Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina.
Michael R Deans, Bela Volgyi, Daniel A Goodenough, Stewart A Bloomfield, David L Paul. Neuron 2002
304
75

Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina.
Béla Völgyi, Joseph Abrams, David L Paul, Stewart A Bloomfield. J Comp Neurol 2005
68
75

Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina.
Timm Schubert, Stephan Maxeiner, Olaf Krüger, Klaus Willecke, Reto Weiler. J Comp Neurol 2005
67
62

Tracer coupling patterns of the ganglion cell subtypes in the mouse retina.
Béla Völgyi, Samir Chheda, Stewart A Bloomfield. J Comp Neurol 2009
205
62

Gap junctional coupling in the vertebrate retina: variations on one theme?
Béla Völgyi, Tamás Kovács-Oller, Tamás Atlasz, Márta Wilhelm, Róbert Gábriel. Prog Retin Eye Res 2013
48
62

Fiji: an open-source platform for biological-image analysis.
Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid,[...]. Nat Methods 2012
62

Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells.
Béla Völgyi, Feng Pan, David L Paul, Jack T Wang, Andrew D Huberman, Stewart A Bloomfield. PLoS One 2013
44
62

Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina.
Timm Schubert, Joachim Degen, Klaus Willecke, Sheriar G Hormuzdi, Hannah Monyer, Reto Weiler. J Comp Neurol 2005
78
62

Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36.
M Güldenagel, J Ammermüller, A Feigenspan, B Teubner, J Degen, G Söhl, K Willecke, R Weiler. J Neurosci 2001
186
62

The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina.
Eun-Jin Lee, Jung-Won Han, Hyun-Ju Kim, In-Beom Kim, Mun-Yong Lee, Su-Ja Oh, Jin-Woong Chung, Myung-Hoon Chun. Eur J Neurosci 2003
68
62

Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina.
A Feigenspan, B Teubner, K Willecke, R Weiler. J Neurosci 2001
160
62

Photoreceptor coupling mediated by connexin36 in the primate retina.
Jennifer J O'Brien, Xiaoming Chen, Peter R Macleish, John O'Brien, Stephen C Massey. J Neurosci 2012
60
62

Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina.
Feng Pan, David L Paul, Stewart A Bloomfield, Béla Völgyi. J Comp Neurol 2010
55
62

Calretinin in neurochemically well-defined cell populations of rabbit retina.
B Völgyi, E Pollak, P Buzás, R Gábriel. Brain Res 1997
52
50

Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina.
Alexandre Hiroaki Kihara, Leandro Mantovani de Castro, Mônica Aparecida Belmonte, Chao Yun Irene Yan, Anselmo Sigari Moriscot, Dânia Emi Hamassaki. J Neurobiol 2006
31
50


Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina.
Andreas Feigenspan, Ulrike Janssen-Bienhold, Sheriar Hormuzdi, Hannah Monyer, Joachim Degen, Goran Söhl, Klaus Willecke, Josef Ammermüller, Reto Weiler. J Neurosci 2004
98
50

Expression patterns of connexin genes in mouse retina.
M Güldenagel, G Söhl, A Plum, O Traub, B Teubner, R Weiler, K Willecke. J Comp Neurol 2000
94
50

Dendrodendritic electrical synapses between mammalian retinal ganglion cells.
Soh Hidaka, Yasushi Akahori, Yoshikazu Kurosawa. J Neurosci 2004
61
50

Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission.
Stephan Maxeiner, Karin Dedek, Ulrike Janssen-Bienhold, Josef Ammermüller, Hendrik Brune, Taryn Kirsch, Mario Pieper, Joachim Degen, Olaf Krüger, Klaus Willecke,[...]. J Neurosci 2005
114
50

Functional expression of connexin57 in horizontal cells of the mouse retina.
Sonja Hombach, Ulrike Janssen-Bienhold, Goran Söhl, Timm Schubert, Heinrich Büssow, Thomas Ott, Reto Weiler, Klaus Willecke. Eur J Neurosci 2004
126
50


Immunocytochemical analysis of the mouse retina.
S Haverkamp, H Wässle. J Comp Neurol 2000
565
37



Rod vision: pathways and processing in the mammalian retina.
S A Bloomfield, R F Dacheux. Prog Retin Eye Res 2001
234
37

Expression of connexin genes in the human retina.
Goran Söhl, Antonia Joussen, Norbert Kociok, Klaus Willecke. BMC Ophthalmol 2010
29
37

Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis.
Alexandre H Kihara, Taisa O Santos, Edgard J Osuna-Melo, Vera Paschon, Kallene S M Vidal, Priscilla S Akamine, Leandro M Castro, Rodrigo R Resende, Dânia E Hamassaki, Luiz R G Britto. Int J Dev Neurosci 2010
19
37

Expression and modulation of connexin 30.2, a novel gap junction protein in the mouse retina.
Luis Pérez de Sevilla Müller, Karin Dedek, Ulrike Janssen-Bienhold, Arndt Meyer, Maria M Kreuzberg, Susanne Lorenz, Klaus Willecke, Reto Weiler. Vis Neurosci 2010
39
37

An update on connexin genes and their nomenclature in mouse and man.
Goran Söhl, Klaus Willecke. Cell Commun Adhes 2003
334
37

Different functional types of bipolar cells use different gap-junctional proteins.
Bin Lin, Tatjana C Jakobs, Richard H Masland. J Neurosci 2005
40
37

Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease.
Elisabeth Petrasch-Parwez, Hans-Werner Habbes, Svenja Weickert, Marlen Löbbecke-Schumacher, Katherine Striedinger, Stefan Wieczorek, Rolf Dermietzel, Joerg Thomas Epplen. J Comp Neurol 2004
42
37



Multiple neuronal connexins in the mammalian retina.
Stephen C Massey, Jennifer J O'Brien, E Brady Trexler, Wei Li, Joyce W Keung, Stephen L Mills, John O'Brien. Cell Commun Adhes 2003
41
37

Convergence and segregation of the multiple rod pathways in mammalian retina.
Béla Völgyi, Michael R Deans, David L Paul, Stewart A Bloomfield. J Neurosci 2004
128
37

Characterization of connexin36 gap junctions in the human outer retina.
Orsolya Kántor, Zsigmond Benkő, Anna Énzsöly, Csaba Dávid, Angela Naumann, Roland Nitschke, Arnold Szabó, Emese Pálfi, József Orbán, Miklós Nyitrai,[...]. Brain Struct Funct 2016
15
37

Calcium buffer proteins are specific markers of human retinal neurons.
Orsolya Kántor, Szilvia Mezey, Jennifer Adeghate, Angela Naumann, Roland Nitschke, Anna Énzsöly, Arnold Szabó, Ákos Lukáts, János Németh, Zoltán Somogyvári,[...]. Cell Tissue Res 2016
16
37

Bipolar cell gap junctions serve major signaling pathways in the human retina.
Orsolya Kántor, Alexandra Varga, Roland Nitschke, Angela Naumann, Anna Énzsöly, Ákos Lukáts, Arnold Szabó, János Németh, Béla Völgyi. Brain Struct Funct 2017
17
37

Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina.
G Casini, D W Rickman, L Trasarti, N C Brecha. Brain Res Dev Brain Res 1998
28
25



Retinal connectomics: towards complete, accurate networks.
Robert E Marc, Bryan W Jones, Carl B Watt, James R Anderson, Crystal Sigulinsky, Scott Lauritzen. Prog Retin Eye Res 2013
50
25


Microcircuitry of the cat retina.
P Sterling. Annu Rev Neurosci 1983
190
25


Function and plasticity of homologous coupling between AII amacrine cells.
Stewart A Bloomfield, Béla Völgyi. Vision Res 2004
68
25



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.