A citation-based method for searching scientific literature

Kangxin Jin, Haisong Jiang, Dongchang Xiao, Min Zou, Jun Zhu, Mengqing Xiang. Mol Brain 2015
Times Cited: 28







List of co-cited articles
225 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors.
Shengguo Li, Zeqian Mo, Xuejie Yang, Sandy M Price, Michael M Shen, Mengqing Xiang. Neuron 2004
177
50

Ptf1a determines horizontal and amacrine cell fates during mouse retinal development.
Yoshio Fujitani, Shuko Fujitani, Huijun Luo, Feng Qiu, Jared Burlison, Qiaoming Long, Yoshiya Kawaguchi, Helena Edlund, Raymond J MacDonald, Takahisa Furukawa,[...]. Development 2006
165
46

Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina.
Erin A Bassett, Anna Korol, Paula A Deschamps, Reinhard Buettner, Valerie A Wallace, Trevor Williams, Judith A West-Mays. Dev Dyn 2012
38
39

Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina.
Hassan Nakhai, Saadettin Sel, Jack Favor, Lidia Mendoza-Torres, Friedrich Paulsen, Gernot I W Duncker, Roland M Schmid. Development 2007
137
32


An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons.
Hong Liu, Soo-Young Kim, Yulong Fu, Xuefeng Wu, Lily Ng, Anand Swaroop, Douglas Forrest. Nat Commun 2013
41
28

The AP-2 family of transcription factors.
Dawid Eckert, Sandra Buhl, Susanne Weber, Richard Jäger, Hubert Schorle. Genome Biol 2005
274
28

Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta.
M Moser, A Pscherer, C Roth, J Becker, G Mücher, K Zerres, C Dixkens, J Weis, L Guay-Woodford, R Buettner,[...]. Genes Dev 1997
217
28

Intrinsic control of mammalian retinogenesis.
Mengqing Xiang. Cell Mol Life Sci 2013
55
25

Onecut1 is essential for horizontal cell genesis and retinal integrity.
Fuguo Wu, Renzhong Li, Yumiko Umino, Tadeusz J Kaczynski, Darshan Sapkota, Shengguo Li, Mengqing Xiang, Steven J Fliesler, David M Sherry, Maureen Gannon,[...]. J Neurosci 2013
42
25

Lim1 is essential for the correct laminar positioning of retinal horizontal cells.
Ross A Poché, Kin Ming Kwan, Mary A Raven, Yasuhide Furuta, Benjamin E Reese, Richard R Behringer. J Neurosci 2007
75
21


Conditional deletion of activating protein 2alpha (AP-2alpha) in the developing retina demonstrates non-cell-autonomous roles for AP-2alpha in optic cup development.
Erin A Bassett, Giuseppe F Pontoriero, Weiguo Feng, Till Marquardt, M Elizabeth Fini, Trevor Williams, Judith A West-Mays. Mol Cell Biol 2007
53
21

Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity.
Satoshi Watanabe, Rikako Sanuki, Yuko Sugita, Wataru Imai, Ryoji Yamazaki, Takashi Kozuka, Mizuki Ohsuga, Takahisa Furukawa. J Neurosci 2015
29
17

Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development.
Akihiro Nishida, Akiko Furukawa, Chieko Koike, Yasuo Tano, Shinichi Aizawa, Isao Matsuo, Takahisa Furukawa. Nat Neurosci 2003
398
17

Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells.
Yasser Elshatory, Drew Everhart, Min Deng, Xiaoling Xie, Robert B Barlow, Lin Gan. J Neurosci 2007
132
17

Pax6 is required for the multipotent state of retinal progenitor cells.
T Marquardt, R Ashery-Padan, N Andrejewski, R Scardigli, F Guillemot, P Gruss. Cell 2001
660
17


Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina.
Stephan Sonntag, Karin Dedek, Birthe Dorgau, Konrad Schultz, Karl-Friedrich Schmidt, Kerstin Cimiotti, Reto Weiler, Siegrid Löwel, Klaus Willecke, Ulrike Janssen-Bienhold. J Neurosci 2012
35
17

Cell fate determination in the vertebrate retina.
C L Cepko, C P Austin, X Yang, M Alexiades, D Ezzeddine. Proc Natl Acad Sci U S A 1996
747
14

Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2.
Xiuqian Mu, Xueyao Fu, Phillip D Beremand, Terry L Thomas, William H Klein. Proc Natl Acad Sci U S A 2008
103
14

Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development.
Darshan Sapkota, Hemabindu Chintala, Fuguo Wu, Steven J Fliesler, Zihua Hu, Xiuqian Mu. Proc Natl Acad Sci U S A 2014
51
14

Vertebrate neural cell-fate determination: lessons from the retina.
F J Livesey, C L Cepko. Nat Rev Neurosci 2001
684
14

Math3 and NeuroD regulate amacrine cell fate specification in the retina.
Tomoyuki Inoue, Masato Hojo, Yasumasa Bessho, Yasuo Tano, Jacqueline E Lee, Ryoichiro Kageyama. Development 2002
208
14


POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells.
L Gan, M Xiang, L Zhou, D S Wagner, W H Klein, J Nathans. Proc Natl Acad Sci U S A 1996
263
14

Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors.
Huijun Luo, Kangxin Jin, Zhenhui Xie, Feng Qiu, Shengguo Li, Min Zou, Li Cai, Katsuto Hozumi, David T Shima, Mengqing Xiang. Proc Natl Acad Sci U S A 2012
47
14

Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2.
J Zhang, S Hagopian-Donaldson, G Serbedzija, J Elsemore, D Plehn-Dujowich, A P McMahon, R A Flavell, T Williams. Nature 1996
499
14

Transcription factor AP-2 essential for cranial closure and craniofacial development.
H Schorle, P Meier, M Buchert, R Jaenisch, P J Mitchell. Nature 1996
484
14

AP-2alpha transcription factor is required for early morphogenesis of the lens vesicle.
J A West-Mays, J Zhang, T Nottoli, S Hagopian-Donaldson, D Libby, K J Strissel, T Williams. Dev Biol 1999
130
14

Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells.
Zeqian Mo, Shengguo Li, Xuejie Yang, Mengqing Xiang. Development 2004
78
14

Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum.
Mikio Hoshino, Shoko Nakamura, Kiyoshi Mori, Takeshi Kawauchi, Mami Terao, Yoshiaki V Nishimura, Akihisa Fukuda, Toshimitsu Fuse, Naoki Matsuo, Masaki Sone,[...]. Neuron 2005
319
14

Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina.
Anand Swaroop, Douglas Kim, Douglas Forrest. Nat Rev Neurosci 2010
319
14

Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander,[...]. Proc Natl Acad Sci U S A 2005
14

Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus.
M Satoda, F Zhao, G A Diaz, J Burn, J Goodship, H R Davidson, M E Pierpont, B D Gelb. Nat Genet 2000
160
14

Requirement for math5 in the development of retinal ganglion cells.
S W Wang, B S Kim, K Ding, H Wang, D Sun, R L Johnson, W H Klein, L Gan. Genes Dev 2001
360
10



Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development.
Joseph A Brzezinski, Deepak A Lamba, Thomas A Reh. Development 2010
83
10

The fundamental plan of the retina.
R H Masland. Nat Neurosci 2001
622
10





Bhlhb5 is required for the subtype development of retinal amacrine and bipolar cells in mice.
Liang Huang, Fang Hu, Liang Feng, Xiong-Jian Luo, Guoqing Liang, Xiang-Yun Zeng, Jing-Lin Yi, Lin Gan. Dev Dyn 2014
20
15




Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration.
Richard T Libby, Michael G Anderson, Iok-Hou Pang, Zachary H Robinson, Olga V Savinova, I Mihai Cosma, Amy Snow, Lawriston A Wilson, Richard S Smith, Abbot F Clark,[...]. Vis Neurosci 2005
266
10

Cell autonomous roles for AP-2alpha in lens vesicle separation and maintenance of the lens epithelial cell phenotype.
Giuseppe F Pontoriero, Paula Deschamps, Ruth Ashery-Padan, Ryan Wong, Ying Yang, Jiri Zavadil, Ales Cvekl, Shelley Sullivan, Trevor Williams, Judith A West-Mays. Dev Dyn 2008
46
10


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.