A citation-based method for searching scientific literature

Sarah Hammer, Aboozar Monavarfeshani, Tyler Lemon, Jianmin Su, Michael Andrew Fox. Cell Rep 2015
Times Cited: 51







List of co-cited articles
545 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus.
Josh Lyskowski Morgan, Daniel Raimund Berger, Arthur Willis Wetzel, Jeff William Lichtman. Cell 2016
107
54


Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing.
Santiago B Rompani, Fiona E Müllner, Adrian Wanner, Chi Zhang, Chiara N Roth, Keisuke Yonehara, Botond Roska. Neuron 2017
50
38

A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex.
Alberto Cruz-Martín, Rana N El-Danaf, Fumitaka Osakada, Balaji Sriram, Onkar S Dhande, Phong L Nguyen, Edward M Callaway, Anirvan Ghosh, Andrew D Huberman. Nature 2014
187
35

Structural and functional composition of the developing retinogeniculate pathway in the mouse.
Lisa Jaubert-Miazza, Erick Green, Fu-Sun Lo, Kim Bui, Jeremy Mills, William Guido. Vis Neurosci 2005
160
33

Diverse visual features encoded in mouse lateral geniculate nucleus.
Denise M Piscopo, Rana N El-Danaf, Andrew D Huberman, Cristopher M Niell. J Neurosci 2013
197
33

Synaptic development of the mouse dorsal lateral geniculate nucleus.
Martha E Bickford, Arkadiusz Slusarczyk, Emily K Dilger, Thomas E Krahe, Can Kucuk, William Guido. J Comp Neurol 2010
66
29

Refinement of the retinogeniculate synapse by bouton clustering.
Y Kate Hong, SuHong Park, Elizabeth Y Litvina, Jose Morales, Joshua R Sanes, Chinfei Chen. Neuron 2014
48
31

Wiring and rewiring of the retinogeniculate synapse.
Y Kate Hong, Chinfei Chen. Curr Opin Neurobiol 2011
76
29

The functional diversity of retinal ganglion cells in the mouse.
Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, Thomas Euler. Nature 2016
394
29

Synaptic circuits involving an individual retinogeniculate axon in the cat.
J E Hamos, S C Van Horn, D Raczkowski, S M Sherman. J Comp Neurol 1987
194
25

Retinal and Tectal "Driver-Like" Inputs Converge in the Shell of the Mouse Dorsal Lateral Geniculate Nucleus.
Martha E Bickford, Na Zhou, Thomas E Krahe, Gubbi Govindaiah, William Guido. J Neurosci 2015
71
25

Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus.
James H Marshel, Alfred P Kaye, Ian Nauhaus, Edward M Callaway. Neuron 2012
110
25

Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse.
Thomas E Krahe, Rana N El-Danaf, Emily K Dilger, Scott C Henderson, William Guido. J Neurosci 2011
75
25

Binocular integration in the mouse lateral geniculate nuclei.
Michael Howarth, Lauren Walmsley, Timothy M Brown. Curr Biol 2014
49
26



Mechanisms underlying development of visual maps and receptive fields.
Andrew D Huberman, Marla B Feller, Barbara Chapman. Annu Rev Neurosci 2008
398
23

Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion.
Andrew D Huberman, Wei Wei, Justin Elstrott, Ben K Stafford, Marla B Feller, Ben A Barres. Neuron 2009
253
21

Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells.
Andrew D Huberman, Mihai Manu, Selina M Koch, Michael W Susman, Amanda Brosius Lutz, Erik M Ullian, Stephen A Baccus, Ben A Barres. Neuron 2008
199
21

Functional Convergence at the Retinogeniculate Synapse.
Elizabeth Y Litvina, Chinfei Chen. Neuron 2017
25
44

Emergence of orientation selectivity in the Mammalian visual pathway.
Benjamin Scholl, Andrew Y Y Tan, Joseph Corey, Nicholas J Priebe. J Neurosci 2013
92
19

Orientation-selective responses in the mouse lateral geniculate nucleus.
Xinyu Zhao, Hui Chen, Xiaorong Liu, Jianhua Cang. J Neurosci 2013
86
19


Refinement of the retinogeniculate pathway.
William Guido. J Physiol 2008
68
19

Transmission of spike trains at the retinogeniculate synapse.
Lawrence C Sincich, Daniel L Adams, John R Economides, Jonathan C Horton. J Neurosci 2007
79
19

Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.
Jeremy N Kay, Irina De la Huerta, In-Jung Kim, Yifeng Zhang, Masahito Yamagata, Monica W Chu, Markus Meister, Joshua R Sanes. J Neurosci 2011
210
19

Simultaneous recording of input and output of lateral geniculate neurones.
B G Cleland, M W Dubin, W R Levick. Nat New Biol 1971
178
17




Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input.
Rana N El-Danaf, Thomas E Krahe, Emily K Dilger, Martha E Bickford, Michael A Fox, William Guido. Neural Dev 2015
22
40

Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing.
Michal Rivlin-Etzion, Kaili Zhou, Wei Wei, Justin Elstrott, Phong L Nguyen, Ben A Barres, Andrew D Huberman, Marla B Feller. J Neurosci 2011
131
17

Molecular identification of a retinal cell type that responds to upward motion.
In-Jung Kim, Yifeng Zhang, Masahito Yamagata, Markus Meister, Joshua R Sanes. Nature 2008
276
17

Binocular Visual Responses in the Primate Lateral Geniculate Nucleus.
Natalie Zeater, Soon K Cheong, Samuel G Solomon, Bogdan Dreher, Paul R Martin. Curr Biol 2015
34
26

Rapid plasticity of visual responses in the adult lateral geniculate nucleus.
Bartlett D Moore, Caitlin W Kiley, Chao Sun, W Martin Usrey. Neuron 2011
22
40

Retinofugal projections in the mouse.
Lawrence P Morin, Keith M Studholme. J Comp Neurol 2014
109
17

Diverse Central Projection Patterns of Retinal Ganglion Cells.
Emily M Martersteck, Karla E Hirokawa, Mariah Evarts, Amy Bernard, Xin Duan, Yang Li, Lydia Ng, Seung W Oh, Benjamin Ouellette, Joshua J Royall,[...]. Cell Rep 2017
86
17

The multifunctional lateral geniculate nucleus.
Theodore G Weyand. Rev Neurosci 2016
20
45

The role of the thalamus in the flow of information to the cortex.
S Murray Sherman, R W Guillery. Philos Trans R Soc Lond B Biol Sci 2002
503
15


Retinal input regulates the timing of corticogeniculate innervation.
Tania A Seabrook, Rana N El-Danaf, Thomas E Krahe, Michael A Fox, William Guido. J Neurosci 2013
45
17

Contributions of Retinal Ganglion Cells to Subcortical Visual Processing and Behaviors.
Onkar S Dhande, Benjamin K Stafford, Jung-Hwan A Lim, Andrew D Huberman. Annu Rev Vis Sci 2015
71
15

Development of single retinofugal axon arbors in normal and β2 knock-out mice.
Onkar S Dhande, Ethan W Hua, Emily Guh, Jonathan Yeh, Shivani Bhatt, Yueyi Zhang, Edward S Ruthazer, Marla B Feller, Michael C Crair. J Neurosci 2011
81
15

On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus.
Daniel J Denman, Diego Contreras. Front Neural Circuits 2016
19
42

Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus.
Sarah Hammer, Gabriela L Carrillo, Gubbi Govindaiah, Aboozar Monavarfeshani, Joseph S Bircher, Jianmin Su, William Guido, Michael A Fox. Neural Dev 2014
24
29

Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image.
Luis M Martinez, Manuel Molano-Mazón, Xin Wang, Friedrich T Sommer, Judith A Hirsch. Neuron 2014
40
17


Specificity and strength of retinogeniculate connections.
W M Usrey, J B Reppas, R C Reid. J Neurophysiol 1999
161
13

Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision.
Jennifer L Ecker, Olivia N Dumitrescu, Kwoon Y Wong, Nazia M Alam, Shih-Kuo Chen, Tara LeGates, Jordan M Renna, Glen T Prusky, David M Berson, Samer Hattar. Neuron 2010
390
13


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.