A citation-based method for searching scientific literature

Tomislav Ilicic, Jong Kyoung Kim, Aleksandra A Kolodziejczyk, Frederik Otzen Bagger, Davis James McCarthy, John C Marioni, Sarah A Teichmann. Genome Biol 2016
Times Cited: 212







List of co-cited articles
719 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, Rahul Satija. Nat Biotechnol 2018
45

Massively parallel digital transcriptional profiling of single cells.
Grace X Y Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu,[...]. Nat Commun 2017
42

Comprehensive Integration of Single-Cell Data.
Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, Rahul Satija. Cell 2019
40

Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck,[...]. Cell 2015
30

STAR: ultrafast universal RNA-seq aligner.
Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, Thomas R Gingeras. Bioinformatics 2013
27

The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, John L Rinn. Nat Biotechnol 2014
25

Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.
Aaron T L Lun, Karsten Bach, John C Marioni. Genome Biol 2016
359
20

mRNA-Seq whole-transcriptome analysis of a single cell.
Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan Xu, Xiaohui Wang, John Bodeau, Brian B Tuch, Asim Siddiqui,[...]. Nat Methods 2009
20

Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.
Davis J McCarthy, Kieran R Campbell, Aaron T L Lun, Quin F Wills. Bioinformatics 2017
382
20

Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy,[...]. Science 2016
20

SCANPY: large-scale single-cell gene expression data analysis.
F Alexander Wolf, Philipp Angerer, Fabian J Theis. Genome Biol 2018
623
20

Dimensionality reduction for visualizing single-cell data using UMAP.
Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel W H Kwok, Lai Guan Ng, Florent Ginhoux, Evan W Newell. Nat Biotechnol 2018
738
20

Spatial reconstruction of single-cell gene expression data.
Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, Aviv Regev. Nat Biotechnol 2015
20

Reversed graph embedding resolves complex single-cell trajectories.
Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, Cole Trapnell. Nat Methods 2017
688
19

Full-length RNA-seq from single cells using Smart-seq2.
Simone Picelli, Omid R Faridani, Asa K Björklund, Gösta Winberg, Sven Sagasser, Rickard Sandberg. Nat Protoc 2014
18

MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.
Greg Finak, Andrew McDavid, Masanao Yajima, Jingyuan Deng, Vivian Gersuk, Alex K Shalek, Chloe K Slichter, Hannah W Miller, M Juliana McElrath, Martin Prlic,[...]. Genome Biol 2015
575
18


Current best practices in single-cell RNA-seq analysis: a tutorial.
Malte D Luecken, Fabian J Theis. Mol Syst Biol 2019
269
18

Quantitative single-cell RNA-seq with unique molecular identifiers.
Saiful Islam, Amit Zeisel, Simon Joost, Gioele La Manno, Pawel Zajac, Maria Kasper, Peter Lönnerberg, Sten Linnarsson. Nat Methods 2014
580
17

Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells.
Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio Scialdone, Fabian J Theis, Sarah A Teichmann, John C Marioni, Oliver Stegle. Nat Biotechnol 2015
550
17

Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li, Leonid Peshkin, David A Weitz, Marc W Kirschner. Cell 2015
17

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Michael I Love, Wolfgang Huber, Simon Anders. Genome Biol 2014
17

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, John C Marioni. Nat Biotechnol 2018
428
17


edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.
Mark D Robinson, Davis J McCarthy, Gordon K Smyth. Bioinformatics 2010
16

The Human Cell Atlas.
Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe Benoist, Ewan Birney, Bernd Bodenmiller, Peter Campbell, Piero Carninci, Menna Clatworthy,[...]. Elife 2017
632
16

RNA velocity of single cells.
Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan,[...]. Nature 2018
588
16

SCnorm: robust normalization of single-cell RNA-seq data.
Rhonda Bacher, Li-Fang Chu, Ning Leng, Audrey P Gasch, James A Thomson, Ron M Stewart, Michael Newton, Christina Kendziorski. Nat Methods 2017
123
15

Normalizing single-cell RNA sequencing data: challenges and opportunities.
Catalina A Vallejos, Davide Risso, Antonio Scialdone, Sandrine Dudoit, John C Marioni. Nat Methods 2017
151
15

Computational and analytical challenges in single-cell transcriptomics.
Oliver Stegle, Sarah A Teichmann, John C Marioni. Nat Rev Genet 2015
518
15

Comparative Analysis of Single-Cell RNA Sequencing Methods.
Christoph Ziegenhain, Beate Vieth, Swati Parekh, Björn Reinius, Amy Guillaumet-Adkins, Martha Smets, Heinrich Leonhardt, Holger Heyn, Ines Hellmann, Wolfgang Enard. Mol Cell 2017
502
15

Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander,[...]. Proc Natl Acad Sci U S A 2005
15

The technology and biology of single-cell RNA sequencing.
Aleksandra A Kolodziejczyk, Jong Kyoung Kim, Valentine Svensson, John C Marioni, Sarah A Teichmann. Mol Cell 2015
439
14

Accounting for technical noise in single-cell RNA-seq experiments.
Philip Brennecke, Simon Anders, Jong Kyoung Kim, Aleksandra A Kołodziejczyk, Xiuwei Zhang, Valentina Proserpio, Bianka Baying, Vladimir Benes, Sarah A Teichmann, John C Marioni,[...]. Nat Methods 2013
488
14

HTSeq--a Python framework to work with high-throughput sequencing data.
Simon Anders, Paul Theodor Pyl, Wolfgang Huber. Bioinformatics 2015
14

Bayesian approach to single-cell differential expression analysis.
Peter V Kharchenko, Lev Silberstein, David T Scadden. Nat Methods 2014
529
14

Fast, sensitive and accurate integration of single-cell data with Harmony.
Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-Ru Loh, Soumya Raychaudhuri. Nat Methods 2019
339
14

Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.
Kelly Street, Davide Risso, Russell B Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth Purdom, Sandrine Dudoit. BMC Genomics 2018
310
13

A comparison of single-cell trajectory inference methods.
Wouter Saelens, Robrecht Cannoodt, Helena Todorov, Yvan Saeys. Nat Biotechnol 2019
269
13



DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors.
Christopher S McGinnis, Lyndsay M Murrow, Zev J Gartner. Cell Syst 2019
181
13

Single-cell RNA sequencing technologies and bioinformatics pipelines.
Byungjin Hwang, Ji Hyun Lee, Duhee Bang. Exp Mol Med 2018
351
13

Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Anoop P Patel, Itay Tirosh, John J Trombetta, Alex K Shalek, Shawn M Gillespie, Hiroaki Wakimoto, Daniel P Cahill, Brian V Nahed, William T Curry, Robert L Martuza,[...]. Science 2014
12

Smart-seq2 for sensitive full-length transcriptome profiling in single cells.
Simone Picelli, Åsa K Björklund, Omid R Faridani, Sven Sagasser, Gösta Winberg, Rickard Sandberg. Nat Methods 2013
961
12

SC3: consensus clustering of single-cell RNA-seq data.
Vladimir Yu Kiselev, Kristina Kirschner, Michael T Schaub, Tallulah Andrews, Andrew Yiu, Tamir Chandra, Kedar N Natarajan, Wolf Reik, Mauricio Barahona, Anthony R Green,[...]. Nat Methods 2017
441
12

Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.
Dvir Aran, Agnieszka P Looney, Leqian Liu, Esther Wu, Valerie Fong, Austin Hsu, Suzanna Chak, Ram P Naikawadi, Paul J Wolters, Adam R Abate,[...]. Nat Immunol 2019
341
12

Single-Cell RNA-Seq Technologies and Related Computational Data Analysis.
Geng Chen, Baitang Ning, Tieliu Shi. Front Genet 2019
147
12

A benchmark of batch-effect correction methods for single-cell RNA sequencing data.
Hoa Thi Nhu Tran, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole Yee Shin Lee, Michelle Goh, Jinmiao Chen. Genome Biol 2020
107
12

Challenges in unsupervised clustering of single-cell RNA-seq data.
Vladimir Yu Kiselev, Tallulah S Andrews, Martin Hemberg. Nat Rev Genet 2019
190
11


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.