A citation-based method for searching scientific literature

Bogdan C Raducanu, Refet F Yazicioglu, Carolina M Lopez, Marco Ballini, Jan Putzeys, Shiwei Wang, Alexandru Andrei, Veronique Rochus, Marleen Welkenhuysen, Nick van Helleputte, Silke Musa, Robert Puers, Fabian Kloosterman, Chris van Hoof, Richárd Fiáth, István Ulbert, Srinjoy Mitra. Sensors (Basel) 2017
Times Cited: 44







List of co-cited articles
435 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Fully integrated silicon probes for high-density recording of neural activity.
James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın,[...]. Nature 2017
514
70

Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording.
Jorg Scholvin, Justin P Kinney, Jacob G Bernstein, Caroline Moore-Kochlacs, Nancy Kopell, Clifton G Fonstad, Edward S Boyden. IEEE Trans Biomed Eng 2016
87
43

Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration.
Lan Luan, Xiaoling Wei, Zhengtuo Zhao, Jennifer J Siegel, Ojas Potnis, Catherine A Tuppen, Shengqing Lin, Shams Kazmi, Robert A Fowler, Stewart Holloway,[...]. Sci Adv 2017
166
29

Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity.
Gustavo Rios, Evgueniy V Lubenov, Derrick Chi, Michael L Roukes, Athanassios G Siapas. Nano Lett 2016
60
27

Challenges and opportunities for large-scale electrophysiology with Neuropixels probes.
Nicholas A Steinmetz, Christof Koch, Kenneth D Harris, Matteo Carandini. Curr Opin Neurobiol 2018
72
27

A Neural Probe With Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13 $\mu$m SOI CMOS.
Carolina Mora Lopez, Jan Putzeys, Bogdan Cristian Raducanu, Marco Ballini, Shiwei Wang, Alexandru Andrei, Veronique Rochus, Roeland Vandebriel, Simone Severi, Chris Van Hoof,[...]. IEEE Trans Biomed Circuits Syst 2017
40
27

Large-scale recording of neuronal ensembles.
György Buzsáki. Nat Neurosci 2004
868
25

Response of brain tissue to chronically implanted neural electrodes.
Vadim S Polikov, Patrick A Tresco, William M Reichert. J Neurosci Methods 2005
865
25

High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays.
Jason E Chung, Hannah R Joo, Jiang Lan Fan, Daniel F Liu, Alex H Barnett, Supin Chen, Charlotte Geaghan-Breiner, Mattias P Karlsson, Magnus Karlsson, Kye Y Lee,[...]. Neuron 2019
78
25

Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals.
Fan Wu, Eran Stark, Pei-Cheng Ku, Kensall D Wise, György Buzsáki, Euisik Yoon. Neuron 2015
134
20

A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings.
Richárd Fiáth, Bogdan Cristian Raducanu, Silke Musa, Alexandru Andrei, Carolina Mora Lopez, Chris van Hoof, Patrick Ruther, Arno Aarts, Domonkos Horváth, István Ulbert. Biosens Bioelectron 2018
21
42

Novel electrode technologies for neural recordings.
Guosong Hong, Charles M Lieber. Nat Rev Neurosci 2019
113
20

Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
Tae-il Kim, Jordan G McCall, Yei Hwan Jung, Xian Huang, Edward R Siuda, Yuhang Li, Jizhou Song, Young Min Song, Hsuan An Pao, Rak-Hwan Kim,[...]. Science 2013
480
18

Characterization of neocortical principal cells and interneurons by network interactions and extracellular features.
Peter Barthó, Hajime Hirase, Lenaïc Monconduit, Michael Zugaro, Kenneth D Harris, György Buzsáki. J Neurophysiol 2004
464
18


Neural Recording and Modulation Technologies.
Ritchie Chen, Andres Canales, Polina Anikeeva. Nat Rev Mater 2017
141
18

Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
Tian-Ming Fu, Guosong Hong, Robert D Viveros, Tao Zhou, Charles M Lieber. Proc Natl Acad Sci U S A 2017
50
18

Stable long-term chronic brain mapping at the single-neuron level.
Tian-Ming Fu, Guosong Hong, Tao Zhou, Thomas G Schuhmann, Robert D Viveros, Charles M Lieber. Nat Methods 2016
119
18

Neural probe design for reduced tissue encapsulation in CNS.
John P Seymour, Daryl R Kipke. Biomaterials 2007
231
18

State-of-the-art MEMS and microsystem tools for brain research.
John P Seymour, Fan Wu, Kensall D Wise, Euisik Yoon. Microsyst Nanoeng 2017
63
15

On the origin of the extracellular action potential waveform: A modeling study.
Carl Gold, Darrell A Henze, Christof Koch, György Buzsáki. J Neurophysiol 2006
281
15

Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
Antal Berényi, Zoltán Somogyvári, Anett J Nagy, Lisa Roux, John D Long, Shigeyoshi Fujisawa, Eran Stark, Anthony Leonardo, Timothy D Harris, György Buzsáki. J Neurophysiol 2014
164
15

Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes.
Justin L Shobe, Leslie D Claar, Sepideh Parhami, Konstantin I Bakhurin, Sotiris C Masmanidis. J Neurophysiol 2015
67
15

A Fully Automated Approach to Spike Sorting.
Jason E Chung, Jeremy F Magland, Alex H Barnett, Vanessa M Tolosa, Angela C Tooker, Kye Y Lee, Kedar G Shah, Sarah H Felix, Loren M Frank, Leslie F Greengard. Neuron 2017
118
15

Relationship between intracortical electrode design and chronic recording function.
Lohitash Karumbaiah, Tarun Saxena, David Carlson, Ketki Patil, Radhika Patkar, Eric A Gaupp, Martha Betancur, Garrett B Stanley, Lawrence Carin, Ravi V Bellamkonda. Biomaterials 2013
125
15

Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.
Takashi D Yoshida Kozai, Nicholas B Langhals, Paras R Patel, Xiaopei Deng, Huanan Zhang, Karen L Smith, Joerg Lahann, Nicholas A Kotov, Daryl R Kipke. Nat Mater 2012
306
15

Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
Tao Zhou, Guosong Hong, Tian-Ming Fu, Xiao Yang, Thomas G Schuhmann, Robert D Viveros, Charles M Lieber. Proc Natl Acad Sci U S A 2017
74
15

How advances in neural recording affect data analysis.
Ian H Stevenson, Konrad P Kording. Nat Neurosci 2011
212
15

Glial responses to implanted electrodes in the brain.
Joseph W Salatino, Kip A Ludwig, Takashi D Y Kozai, Erin K Purcell. Nat Biomed Eng 2017
140
15


Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice.
Ashley L Juavinett, George Bekheet, Anne K Churchland. Elife 2019
38
18

Genetically encoded indicators of neuronal activity.
Michael Z Lin, Mark J Schnitzer. Nat Neurosci 2016
286
13

New approaches for CMOS-based devices for large-scale neural recording.
Patrick Ruther, Oliver Paul. Curr Opin Neurobiol 2015
24
25

Multiplexed, high density electrophysiology with nanofabricated neural probes.
Jiangang Du, Timothy J Blanche, Reid R Harrison, Henry A Lester, Sotiris C Masmanidis. PLoS One 2011
104
13

Intracellular features predicted by extracellular recordings in the hippocampus in vivo.
D A Henze, Z Borhegyi, J Csicsvari, A Mamiya, K D Harris, G Buzsáki. J Neurophysiol 2000
493
13

Quantitative measures of cluster quality for use in extracellular recordings.
N Schmitzer-Torbert, J Jackson, D Henze, K Harris, A D Redish. Neuroscience 2005
403
13

In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales.
Andrew A Sharp, Alicia M Ortega, Diego Restrepo, Douglas Curran-Everett, Ken Gall. IEEE Trans Biomed Eng 2009
64
13

Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.
Chong Xie, Jia Liu, Tian-Ming Fu, Xiaochuan Dai, Wei Zhou, Charles M Lieber. Nat Mater 2015
155
13

Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion.
C S Bjornsson, S J Oh, Y A Al-Kofahi, Y J Lim, K L Smith, J N Turner, S De, B Roysam, W Shain, S J Kim. J Neural Eng 2006
177
13

Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication.
Ahuva Weltman, James Yoo, Ellis Meng. Micromachines (Basel) 2016
51
13

Tissue-like Neural Probes for Understanding and Modulating the Brain.
Guosong Hong, Robert D Viveros, Theodore J Zwang, Xiao Yang, Charles M Lieber. Biochemistry 2018
18
33

Syringe-injectable electronics.
Jia Liu, Tian-Ming Fu, Zengguang Cheng, Guosong Hong, Tao Zhou, Lihua Jin, Madhavi Duvvuri, Zhe Jiang, Peter Kruskal, Chong Xie,[...]. Nat Nanotechnol 2015
243
13

Tools for probing local circuits: high-density silicon probes combined with optogenetics.
György Buzsáki, Eran Stark, Antal Berényi, Dion Khodagholy, Daryl R Kipke, Euisik Yoon, Kensall D Wise. Neuron 2015
129
13

Mesh electronics: a new paradigm for tissue-like brain probes.
Guosong Hong, Xiao Yang, Tao Zhou, Charles M Lieber. Curr Opin Neurobiol 2018
40
15

Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys.
David A Schwarz, Mikhail A Lebedev, Timothy L Hanson, Dragan F Dimitrov, Gary Lehew, Jim Meloy, Sankaranarayani Rajangam, Vivek Subramanian, Peter J Ifft, Zheng Li,[...]. Nat Methods 2014
148
13

NeuroGrid: recording action potentials from the surface of the brain.
Dion Khodagholy, Jennifer N Gelinas, Thomas Thesen, Werner Doyle, Orrin Devinsky, George G Malliaras, György Buzsáki. Nat Neurosci 2015
297
13

Bioinspired neuron-like electronics.
Xiao Yang, Tao Zhou, Theodore J Zwang, Guosong Hong, Yunlong Zhao, Robert D Viveros, Tian-Ming Fu, Teng Gao, Charles M Lieber. Nat Mater 2019
86
13

Spontaneous behaviors drive multidimensional, brainwide activity.
Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, Kenneth D Harris. Science 2019
246
13

Brain tissue responses to neural implants impact signal sensitivity and intervention strategies.
Takashi D Y Kozai, Andrea S Jaquins-Gerstl, Alberto L Vazquez, Adrian C Michael, X Tracy Cui. ACS Chem Neurosci 2015
217
13

Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe.
Robert Scharf, Tomomi Tsunematsu, Niall McAlinden, Martin D Dawson, Shuzo Sakata, Keith Mathieson. Sci Rep 2016
50
11


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.