A citation-based method for searching scientific literature

Katerina Cabolis, Anne Steinberg, Elisa Raffaella Ferrè. Exp Brain Res 2018
Times Cited: 2







List of co-cited articles
2 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Otolith and canal reflexes in human standing.
Ian Cathers, Brian L Day, Richard C Fitzpatrick. J Physiol 2005
101
100

Probing the human vestibular system with galvanic stimulation.
Richard C Fitzpatrick, Brian L Day. J Appl Physiol (1985) 2004
372
100

Vection in virtual reality modulates vestibular-evoked myogenic potentials.
Maria Gallagher, Ross Dowsett, Elisa Raffaella Ferrè. Eur J Neurosci 2019
4
50


Rollvection versus linearvection: comparison of brain activations in PET.
Angela Deutschländer, Sandra Bense, Thomas Stephan, Markus Schwaiger, Marianne Dieterich, Thomas Brandt. Hum Brain Mapp 2004
42
50


The representation of egomotion in the human brain.
Matthew B Wall, Andrew T Smith. Curr Biol 2008
143
50


The Bayesian brain: the role of uncertainty in neural coding and computation.
David C Knill, Alexandre Pouget. Trends Neurosci 2004
875
50

Sensory system interactions during simultaneous vestibular and visual stimulation in PET.
Angela Deutschländer, Sandra Bense, Thomas Stephan, Markus Schwaiger, Thomas Brandt, Marianne Dieterich. Hum Brain Mapp 2002
98
50


Visual and vestibular cue integration for heading perception in extrastriate visual cortex.
Dora E Angelaki, Yong Gu, Gregory C Deangelis. J Physiol 2011
53
50

Optic flow induces nonvisual self-motion aftereffects.
Luigi F Cuturi, Paul R MacNeilage. Curr Biol 2014
15
50

Vestibular perception thresholds tested by galvanic vestibular stimulation.
Matthias Ertl, M Klimek, R Boegle, T Stephan, M Dieterich. J Neurol 2018
4
50

Linear vestibular self-motion signals in monkey medial superior temporal area.
F Bremmer, M Kubischik, M Pekel, M Lappe, K P Hoffmann. Ann N Y Acad Sci 1999
94
50


Visual-vestibular integration during self-motion perception in younger and older adults.
Robert Ramkhalawansingh, John S Butler, Jennifer L Campos. Psychol Aging 2018
12
50


Vection and visually induced motion sickness: how are they related?
Behrang Keshavarz, Bernhard E Riecke, Lawrence J Hettinger, Jennifer L Campos. Front Psychol 2015
53
50

Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area.
Christopher R Fetsch, Sentao Wang, Yong Gu, Gregory C Deangelis, Dora E Angelaki. J Neurosci 2007
90
50

Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study.
R Wenzel, P Bartenstein, M Dieterich, A Danek, A Weindl, S Minoshima, S Ziegler, M Schwaiger, T Brandt. Brain 1996
141
50

Neural correlates of visual-motion perception as object- or self-motion.
Andreas Kleinschmidt, Kai V Thilo, Christian Büchel, Michael A Gresty, Adolfo M Bronstein, Richard S J Frackowiak. Neuroimage 2002
142
50

Subliminal galvanic-vestibular stimulation recalibrates the distorted visual and tactile subjective vertical in right-sided stroke.
Karin Oppenländer, Kathrin S Utz, Stefan Reinhart, Ingo Keller, Georg Kerkhoff, Anna-Katharina Schaadt. Neuropsychologia 2015
24
50

Optic flow detection is not influenced by visual-vestibular congruency.
Vivian Holten, Paul R MacNeilage. PLoS One 2018
1
100


Merging the senses into a robust percept.
Marc O Ernst, Heinrich H Bülthoff. Trends Cogn Sci 2004
805
50


Dynamic reweighting of visual and vestibular cues during self-motion perception.
Christopher R Fetsch, Amanda H Turner, Gregory C DeAngelis, Dora E Angelaki. J Neurosci 2009
225
50

Cybersickness: a Multisensory Integration Perspective.
Maria Gallagher, Elisa Raffaella Ferrè. Multisens Res 2018
19
50

Neural correlates of multisensory cue integration in macaque MSTd.
Yong Gu, Dora E Angelaki, Gregory C Deangelis. Nat Neurosci 2008
321
50

Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation.
Wen-Hao Zhang, He Wang, Aihua Chen, Yong Gu, Tai Sing Lee, Ky Michael Wong, Si Wu. Elife 2019
8
50

Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies.
Thomas Stephan, Angela Deutschländer, Annina Nolte, Erich Schneider, Martin Wiesmann, Thomas Brandt, Marianne Dieterich. Neuroimage 2005
153
50


Neural correlates of visually induced self-motion illusion in depth.
Gyula Kovács, Markus Raabe, Mark W Greenlee. Cereb Cortex 2008
64
50


Vestibular inputs to human motion-sensitive visual cortex.
Andrew T Smith, Matthew B Wall, Kai V Thilo. Cereb Cortex 2012
78
50

Vestibular stimulation affects optic-flow sensitivity.
Mark Edwards, Simon O'Mahony, Michael R Ibbotson, Stuart Kohlhagen. Perception 2010
7
50


Self-motion leads to mandatory cue fusion across sensory modalities.
Mario Prsa, Steven Gale, Olaf Blanke. J Neurophysiol 2012
54
50



Research in visually induced motion sickness.
Robert S Kennedy, Julie Drexler, Robert C Kennedy. Appl Ergon 2010
71
50

Motion sickness and proprioceptive aftereffects following virtual environment exposure.
K M Stanney, R S Kennedy, J M Drexler, D L Harm. Appl Ergon 1999
32
50

A long-lasting improvement of tactile extinction after galvanic vestibular stimulation: two Sham-stimulation controlled case studies.
Georg Kerkhoff, Helmut Hildebrandt, Stefan Reinhart, Mareike Kardinal, Violeta Dimova, Kathrin S Utz. Neuropsychologia 2011
33
50


Role of the posterior parietal cortex in updating reaching movements to a visual target.
M Desmurget, C M Epstein, R S Turner, C Prablanc, G E Alexander, S T Grafton. Nat Neurosci 1999
577
50

Vestibular contribution to the planning of reach trajectories.
Christopher J Bockisch, Thomas Haslwanter. Exp Brain Res 2007
20
50


Diverse spatial reference frames of vestibular signals in parietal cortex.
Xiaodong Chen, Gregory C Deangelis, Dora E Angelaki. Neuron 2013
54
50



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.