A citation-based method for searching scientific literature

Rishi Rajalingham, Elias B Issa, Pouya Bashivan, Kohitij Kar, Kailyn Schmidt, James J DiCarlo. J Neurosci 2018
Times Cited: 82







List of co-cited articles
520 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Performance-optimized hierarchical models predict neural responses in higher visual cortex.
Daniel L K Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, James J DiCarlo. Proc Natl Acad Sci U S A 2014
480
58

Deep supervised, but not unsupervised, models may explain IT cortical representation.
Seyed-Mahdi Khaligh-Razavi, Nikolaus Kriegeskorte. PLoS Comput Biol 2014
359
43

Using goal-driven deep learning models to understand sensory cortex.
Daniel L K Yamins, James J DiCarlo. Nat Neurosci 2016
351
40

Deep learning.
Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Nature 2015
31



Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
Charles F Cadieu, Ha Hong, Daniel L K Yamins, Nicolas Pinto, Diego Ardila, Ethan A Solomon, Najib J Majaj, James J DiCarlo. PLoS Comput Biol 2014
197
30

Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior.
Kohitij Kar, Jonas Kubilius, Kailyn Schmidt, Elias B Issa, James J DiCarlo. Nat Neurosci 2019
76
32

Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.
Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, Aude Oliva. Sci Rep 2016
186
29

How does the brain solve visual object recognition?
James J DiCarlo, Davide Zoccolan, Nicole C Rust. Neuron 2012
548
25

Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
Jonas Kubilius, Stefania Bracci, Hans P Op de Beeck. PLoS Comput Biol 2016
80
23

Recurrence is required to capture the representational dynamics of the human visual system.
Tim C Kietzmann, Courtney J Spoerer, Lynn K A Sörensen, Radoslaw M Cichy, Olaf Hauk, Nikolaus Kriegeskorte. Proc Natl Acad Sci U S A 2019
66
25

Neural population control via deep image synthesis.
Pouya Bashivan, Kohitij Kar, James J DiCarlo. Science 2019
73
21

Seeing it all: Convolutional network layers map the function of the human visual system.
Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, Bertrand Thirion. Neuroimage 2017
68
22

Untangling invariant object recognition.
James J DiCarlo, David D Cox. Trends Cogn Sci 2007
365
17

Representational similarity analysis - connecting the branches of systems neuroscience.
Nikolaus Kriegeskorte, Marieke Mur, Peter Bandettini. Front Syst Neurosci 2008
17


Deep convolutional networks do not classify based on global object shape.
Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J Kellman. PLoS Comput Biol 2018
38
36

Explicit information for category-orthogonal object properties increases along the ventral stream.
Ha Hong, Daniel L K Yamins, Najib J Majaj, James J DiCarlo. Nat Neurosci 2016
120
15

Hierarchical models of object recognition in cortex.
M Riesenhuber, T Poggio. Nat Neurosci 1999
15

Recurrent computations for visual pattern completion.
Hanlin Tang, Martin Schrimpf, William Lotter, Charlotte Moerman, Ana Paredes, Josue Ortega Caro, Walter Hardesty, David Cox, Gabriel Kreiman. Proc Natl Acad Sci U S A 2018
47
27

Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
Kamila M Jozwik, Nikolaus Kriegeskorte, Katherine R Storrs, Marieke Mur. Front Psychol 2017
35
34

Deep Learning: The Good, the Bad, and the Ugly.
Thomas Serre. Annu Rev Vis Sci 2019
32
37

A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.
Alexander J E Kell, Daniel L K Yamins, Erica N Shook, Sam V Norman-Haignere, Josh H McDermott. Neuron 2018
86
13

Matching categorical object representations in inferior temporal cortex of man and monkey.
Nikolaus Kriegeskorte, Marieke Mur, Douglas A Ruff, Roozbeh Kiani, Jerzy Bodurka, Hossein Esteky, Keiji Tanaka, Peter A Bandettini. Neuron 2008
649
12


A feedforward architecture accounts for rapid categorization.
Thomas Serre, Aude Oliva, Tomaso Poggio. Proc Natl Acad Sci U S A 2007
417
12

Fast readout of object identity from macaque inferior temporal cortex.
Chou P Hung, Gabriel Kreiman, Tomaso Poggio, James J DiCarlo. Science 2005
443
12

Deep Neural Networks as Scientific Models.
Radoslaw M Cichy, Daniel Kaiser. Trends Cogn Sci 2019
57
17

A deep learning framework for neuroscience.
Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli,[...]. Nat Neurosci 2019
123
12



Comparison of Object Recognition Behavior in Human and Monkey.
Rishi Rajalingham, Kailyn Schmidt, James J DiCarlo. J Neurosci 2015
36
25

Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition.
Saeed Reza Kheradpisheh, Masoud Ghodrati, Mohammad Ganjtabesh, Timothée Masquelier. Sci Rep 2016
47
19

Distributed hierarchical processing in the primate cerebral cortex.
D J Felleman, D C Van Essen. Cereb Cortex 1991
10

Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
Courtney J Spoerer, Patrick McClure, Nikolaus Kriegeskorte. Front Psychol 2017
45
20

Deep convolutional models improve predictions of macaque V1 responses to natural images.
Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge, Alexander S Ecker. PLoS Comput Biol 2019
46
19

Representational geometry: integrating cognition, computation, and the brain.
Nikolaus Kriegeskorte, Rogier A Kievit. Trends Cogn Sci 2013
296
10

Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences.
Carlos R Ponce, Will Xiao, Peter F Schade, Till S Hartmann, Gabriel Kreiman, Margaret S Livingstone. Cell 2019
49
18

Atoms of recognition in human and computer vision.
Shimon Ullman, Liav Assif, Ethan Fetaya, Daniel Harari. Proc Natl Acad Sci U S A 2016
35
22

Building machines that learn and think like people.
Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, Samuel J Gershman. Behav Brain Sci 2017
170
8

Human-level control through deep reinforcement learning.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,[...]. Nature 2015
835
8

Comparing machines and humans on a visual categorization test.
François Fleuret, Ting Li, Charles Dubout, Emma K Wampler, Steven Yantis, Donald Geman. Proc Natl Acad Sci U S A 2011
23
30


Convolutional neural network-based encoding and decoding of visual object recognition in space and time.
K Seeliger, M Fritsche, U Güçlü, S Schoenmakers, J-M Schoffelen, S E Bosch, M A J van Gerven. Neuroimage 2018
30
20


Speed of processing in the human visual system.
S Thorpe, D Fize, C Marlot. Nature 1996
7

Shape representation in the inferior temporal cortex of monkeys.
N K Logothetis, J Pauls, T Poggio. Curr Biol 1995
539
7

Neuroscience-Inspired Artificial Intelligence.
Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, Matthew Botvinick. Neuron 2017
182
7



Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.