A citation-based method for searching scientific literature

Vladimir Yu Kiselev, Tallulah S Andrews, Martin Hemberg. Nat Rev Genet 2019
Times Cited: 271







List of co-cited articles
763 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, Rahul Satija. Nat Biotechnol 2018
35

SC3: consensus clustering of single-cell RNA-seq data.
Vladimir Yu Kiselev, Kristina Kirschner, Michael T Schaub, Tallulah Andrews, Andrew Yiu, Tamir Chandra, Kedar N Natarajan, Wolf Reik, Mauricio Barahona, Anthony R Green,[...]. Nat Methods 2017
527
35

Massively parallel digital transcriptional profiling of single cells.
Grace X Y Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu,[...]. Nat Commun 2017
29

Comprehensive Integration of Single-Cell Data.
Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, Rahul Satija. Cell 2019
27

SCANPY: large-scale single-cell gene expression data analysis.
F Alexander Wolf, Philipp Angerer, Fabian J Theis. Genome Biol 2018
26

Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck,[...]. Cell 2015
26

Spatial reconstruction of single-cell gene expression data.
Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, Aviv Regev. Nat Biotechnol 2015
22

Dimensionality reduction for visualizing single-cell data using UMAP.
Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel W H Kwok, Lai Guan Ng, Florent Ginhoux, Evan W Newell. Nat Biotechnol 2018
21

Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.
Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna Juréus, Sueli Marques, Hermany Munguba, Liqun He, Christer Betsholtz,[...]. Science 2015
21


Current best practices in single-cell RNA-seq analysis: a tutorial.
Malte D Luecken, Fabian J Theis. Mol Syst Biol 2019
419
21

Splatter: simulation of single-cell RNA sequencing data.
Luke Zappia, Belinda Phipson, Alicia Oshlack. Genome Biol 2017
241
20

Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.
David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J Carr, Cassandra Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Pattabiraman,[...]. Cell 2018
431
19

Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li, Leonid Peshkin, David A Weitz, Marc W Kirschner. Cell 2015
19

Simultaneous epitope and transcriptome measurement in single cells.
Marlon Stoeckius, Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija, Peter Smibert. Nat Methods 2017
860
19

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, John C Marioni. Nat Biotechnol 2018
572
18

A comparison of single-cell trajectory inference methods.
Wouter Saelens, Robrecht Cannoodt, Helena Todorov, Yvan Saeys. Nat Biotechnol 2019
378
18

Deep generative modeling for single-cell transcriptomics.
Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, Nir Yosef. Nat Methods 2018
305
17

Bayesian approach to single-cell differential expression analysis.
Peter V Kharchenko, Lev Silberstein, David T Scadden. Nat Methods 2014
584
17

The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, John L Rinn. Nat Biotechnol 2014
17

A Single-Cell Transcriptome Atlas of the Human Pancreas.
Mauro J Muraro, Gitanjali Dharmadhikari, Dominic Grün, Nathalie Groen, Tim Dielen, Erik Jansen, Leon van Gurp, Marten A Engelse, Francoise Carlotti, Eelco J P de Koning,[...]. Cell Syst 2016
450
15

Computational and analytical challenges in single-cell transcriptomics.
Oliver Stegle, Sarah A Teichmann, John C Marioni. Nat Rev Genet 2015
574
15

Single-cell RNA-seq denoising using a deep count autoencoder.
Gökcen Eraslan, Lukas M Simon, Maria Mircea, Nikola S Mueller, Fabian J Theis. Nat Commun 2019
222
15

pcaReduce: hierarchical clustering of single cell transcriptional profiles.
Justina Žurauskienė, Christopher Yau. BMC Bioinformatics 2016
113
15

mRNA-Seq whole-transcriptome analysis of a single cell.
Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan Xu, Xiaohui Wang, John Bodeau, Brian B Tuch, Asim Siddiqui,[...]. Nat Methods 2009
15

The single-cell transcriptional landscape of mammalian organogenesis.
Junyue Cao, Malte Spielmann, Xiaojie Qiu, Xingfan Huang, Daniel M Ibrahim, Andrew J Hill, Fan Zhang, Stefan Mundlos, Lena Christiansen, Frank J Steemers,[...]. Nature 2019
631
15

SAVER: gene expression recovery for single-cell RNA sequencing.
Mo Huang, Jingshu Wang, Eduardo Torre, Hannah Dueck, Sydney Shaffer, Roberto Bonasio, John I Murray, Arjun Raj, Mingyao Li, Nancy R Zhang. Nat Methods 2018
212
14

A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure.
Maayan Baron, Adrian Veres, Samuel L Wolock, Aubrey L Faust, Renaud Gaujoux, Amedeo Vetere, Jennifer Hyoje Ryu, Bridget K Wagner, Shai S Shen-Orr, Allon M Klein,[...]. Cell Syst 2016
476
14

MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.
Greg Finak, Andrew McDavid, Masanao Yajima, Jingyuan Deng, Vivian Gersuk, Alex K Shalek, Chloe K Slichter, Hannah W Miller, M Juliana McElrath, Martin Prlic,[...]. Genome Biol 2015
766
13

Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy,[...]. Science 2016
13

Comparative Analysis of Single-Cell RNA Sequencing Methods.
Christoph Ziegenhain, Beate Vieth, Swati Parekh, Björn Reinius, Amy Guillaumet-Adkins, Martha Smets, Heinrich Leonhardt, Holger Heyn, Ines Hellmann, Wolfgang Enard. Mol Cell 2017
601
13

Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells.
Qiaolin Deng, Daniel Ramsköld, Björn Reinius, Rickard Sandberg. Science 2014
636
13


Mapping the Mouse Cell Atlas by Microwell-Seq.
Xiaoping Han, Renying Wang, Yincong Zhou, Lijiang Fei, Huiyu Sun, Shujing Lai, Assieh Saadatpour, Ziming Zhou, Haide Chen, Fang Ye,[...]. Cell 2018
490
13


Fast, sensitive and accurate integration of single-cell data with Harmony.
Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-Ru Loh, Soumya Raychaudhuri. Nat Methods 2019
613
13

Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity.
Joshua D Welch, Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin, Evan Z Macosko. Cell 2019
282
12

A comparison of automatic cell identification methods for single-cell RNA sequencing data.
Tamim Abdelaal, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J T Reinders, Ahmed Mahfouz. Genome Biol 2019
134
12

Single-cell messenger RNA sequencing reveals rare intestinal cell types.
Dominic Grün, Anna Lyubimova, Lennart Kester, Kay Wiebrands, Onur Basak, Nobuo Sasaki, Hans Clevers, Alexander van Oudenaarden. Nature 2015
621
12

Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.
Aaron T L Lun, Karsten Bach, John C Marioni. Genome Biol 2016
426
12

Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning.
Bo Wang, Junjie Zhu, Emma Pierson, Daniele Ramazzotti, Serafim Batzoglou. Nat Methods 2017
227
12

Missing data and technical variability in single-cell RNA-sequencing experiments.
Stephanie C Hicks, F William Townes, Mingxiang Teng, Rafael A Irizarry. Biostatistics 2018
166
12

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Michael I Love, Wolfgang Huber, Simon Anders. Genome Biol 2014
12

Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex.
Alex A Pollen, Tomasz J Nowakowski, Joe Shuga, Xiaohui Wang, Anne A Leyrat, Jan H Lui, Nianzhen Li, Lukasz Szpankowski, Brian Fowler, Peilin Chen,[...]. Nat Biotechnol 2014
489
12

scmap: projection of single-cell RNA-seq data across data sets.
Vladimir Yu Kiselev, Andrew Yiu, Martin Hemberg. Nat Methods 2018
218
11

Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells.
Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio Scialdone, Fabian J Theis, Sarah A Teichmann, John C Marioni, Oliver Stegle. Nat Biotechnol 2015
590
11


Full-length RNA-seq from single cells using Smart-seq2.
Simone Picelli, Omid R Faridani, Asa K Björklund, Gösta Winberg, Sven Sagasser, Rickard Sandberg. Nat Protoc 2014
11

Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Anoop P Patel, Itay Tirosh, John J Trombetta, Alex K Shalek, Shawn M Gillespie, Hiroaki Wakimoto, Daniel P Cahill, Brian V Nahed, William T Curry, Robert L Martuza,[...]. Science 2014
11

Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments.
Luyi Tian, Xueyi Dong, Saskia Freytag, Kim-Anh Lê Cao, Shian Su, Abolfazl JalalAbadi, Daniela Amann-Zalcenstein, Tom S Weber, Azadeh Seidi, Jafar S Jabbari,[...]. Nat Methods 2019
103
11


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.