A citation-based method for searching scientific literature

Jing-Jing Xing, Jin-Gang Hou, Zhi-Na Ma, Zi Wang, Shen Ren, Ying-Ping Wang, Wen-Cong Liu, Chen Chen, Wei Li. Cell Prolif 2019
Times Cited: 32







List of co-cited articles
228 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Cisplatin in cancer therapy: molecular mechanisms of action.
Shaloam Dasari, Paul Bernard Tchounwou. Eur J Pharmacol 2014
21

Mechanisms of Cisplatin nephrotoxicity.
Ronald P Miller, Raghu K Tadagavadi, Ganesan Ramesh, William Brian Reeves. Toxins (Basel) 2010
806
21

Pathophysiology of cisplatin-induced acute kidney injury.
Abdullah Ozkok, Charles L Edelstein. Biomed Res Int 2014
320
18

Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis.
Wei Li, Meng-Han Yan, Ying Liu, Zhi Liu, Zi Wang, Chen Chen, Jing Zhang, Yin-Shi Sun. Nutrients 2016
72
18

Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction.
Jianzhong Li, Yuan Gui, Jiafa Ren, Xin Liu, Ye Feng, Zhifeng Zeng, Weichun He, Junwei Yang, Chunsun Dai. Sci Rep 2016
94
18

An integrated view of cisplatin-induced nephrotoxicity and ototoxicity.
Takatoshi Karasawa, Peter S Steyger. Toxicol Lett 2015
225
15

NQO1 Deficiency Leads Enhanced Autophagy in Cisplatin-Induced Acute Kidney Injury Through the AMPK/TSC2/mTOR Signaling Pathway.
Tae-Won Kim, Young-Jung Kim, Hyun-Tae Kim, Se-Ra Park, Mee-Young Lee, Yong-Deok Park, Chul-Ho Lee, Ju-Young Jung. Antioxid Redox Signal 2016
32
15

Autophagy in acute kidney injury.
Gur P Kaushal, Sudhir V Shah. Kidney Int 2016
196
15

The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways.
Xiao-Jie Mi, Jin-Gang Hou, Zi Wang, Ye Han, Shen Ren, Jun-Nan Hu, Chen Chen, Wei Li. Sci Rep 2018
42
15


Nephroprotective Effects of Saponins from Leaves of Panax quinquefolius against Cisplatin-Induced Acute Kidney Injury.
Zhi-Na Ma, Yan-Zi Li, Wei Li, Xiao-Tong Yan, Ge Yang, Jing Zhang, Li-Chun Zhao, Li-Min Yang. Int J Mol Sci 2017
42
12


Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway.
Hui Li, Yuling Tang, Long Wen, Xianglong Kong, Xuelian Chen, Ping Liu, Zhiguo Zhou, Wenhang Chen, Chenggen Xiao, Ping Xiao,[...]. Biochem Biophys Res Commun 2017
26
15

Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy.
Hong Liu, Liu-bao Gu, Yue Tu, Hao Hu, Yan-ru Huang, Wei Sun. Acta Pharmacol Sin 2016
42
12

Protein Kinase Cδ Suppresses Autophagy to Induce Kidney Cell Apoptosis in Cisplatin Nephrotoxicity.
Dongshan Zhang, Jian Pan, Xudong Xiang, Yu Liu, Guie Dong, Man J Livingston, Jian-Kang Chen, Xiao-Ming Yin, Zheng Dong. J Am Soc Nephrol 2017
42
12

Autophagy guards against cisplatin-induced acute kidney injury.
Atsushi Takahashi, Tomonori Kimura, Yoshitsugu Takabatake, Tomoko Namba, Junya Kaimori, Harumi Kitamura, Isao Matsui, Fumio Niimura, Taiji Matsusaka, Naonobu Fujita,[...]. Am J Pathol 2012
174
12

Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity.
Yolanda I Chirino, José Pedraza-Chaverri. Exp Toxicol Pathol 2009
330
12

Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks.
Sebastian Alers, Antje S Löffler, Sebastian Wesselborg, Björn Stork. Mol Cell Biol 2012
805
12

Kidney Protection Effect of Ginsenoside Re and Its Underlying Mechanisms on Cisplatin-Induced Kidney Injury.
Zi Wang, Yan-Fei Li, Xin-Yue Han, Yin-Shi Sun, Lian-Xue Zhang, Wei Liu, Xiang-Xiang Liu, Wei Li, Ying-Ying Liu. Cell Physiol Biochem 2018
18
22

Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells.
Myoung-Sik Han, Im-Ho Han, Dahae Lee, Jun Min An, Su-Nam Kim, Myoung-Sook Shin, Noriko Yamabe, Gwi Seo Hwang, Hye Hyun Yoo, Suk-Jung Choi,[...]. J Ginseng Res 2016
36
12

Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-κB and improving mitochondrial function.
Xiaowen Yu, Xia Meng, Man Xu, Xuejuan Zhang, Yue Zhang, Guixia Ding, Songming Huang, Aihua Zhang, Zhanjun Jia. EBioMedicine 2018
54
12

Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo.
Kosuke Inoue, Hitoshi Kuwana, Yoshiko Shimamura, Koji Ogata, Yoshinori Taniguchi, Toru Kagawa, Taro Horino, Toshihiro Takao, Tatsuhito Morita, Sei Sasaki,[...]. Clin Exp Nephrol 2010
68
12



Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis.
Xinliang Chen, Wei Wei, Yazhen Li, Jingbo Huang, Xinxin Ci. Chem Biol Interact 2019
58
12

Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation.
Yong-Min Choi, Han-Kyul Kim, Wooyoung Shim, Muhammad Ayaz Anwar, Ji-Woong Kwon, Hyuk-Kwon Kwon, Hyung Joong Kim, Hyobin Jeong, Hwan Myung Kim, Daehee Hwang,[...]. PLoS One 2015
128
9

ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase.
Ryan C Russell, Ye Tian, Haixin Yuan, Hyun Woo Park, Yu-Yun Chang, Joungmok Kim, Haerin Kim, Thomas P Neufeld, Andrew Dillin, Kun-Liang Guan. Nat Cell Biol 2013
924
9

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo.
Seung-Hoon Baek, Byong-Kyu Shin, Nam Jae Kim, Sun-Young Chang, Jeong Hill Park. J Ginseng Res 2017
21
14

Ginsenoside Rb3 attenuates oxidative stress and preserves endothelial function in renal arteries from hypertensive rats.
Youhua Wang, Jinghui Dong, Ping Liu, Chi Wai Lau, Zhen Gao, Duan Zhou, Jingyi Tang, Chi Fai Ng, Yu Huang. Br J Pharmacol 2014
39
9

The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis.
Lingling Ou, Shaoqiang Lin, Bin Song, Jia Liu, Renfa Lai, Longquan Shao. Int J Nanomedicine 2017
95
9


Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions.
Rossella Marullo, Erica Werner, Natalya Degtyareva, Bryn Moore, Giuseppe Altavilla, Suresh S Ramalingam, Paul W Doetsch. PLoS One 2013
364
9


Panax notoginseng saponins mitigate cisplatin induced nephrotoxicity by inducing mitophagy via HIF-1α.
Xueyan Liang, Yufang Yang, Zhenguang Huang, Jinling Zhou, Yue'e Li, Xiaobin Zhong. Oncotarget 2017
19
15

Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis.
Robert Domitrović, Olga Cvijanović, Ester Pernjak-Pugel, Marko Skoda, Lorena Mikelić, Zeljka Crnčević-Orlić. Food Chem Toxicol 2013
109
9

PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury.
Ying Wang, Chengyuan Tang, Juan Cai, Guochun Chen, Dongshan Zhang, Zhuohua Zhang, Zheng Dong. Cell Death Dis 2018
62
9

Arginyl-fructosyl-glucose, a Major Maillard Reaction Product of Red Ginseng, Attenuates Cisplatin-Induced Acute Kidney Injury by Regulating Nuclear Factor κB and Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathways.
Rong-Yan Li, Wei-Zhe Zhang, Xiao-Tong Yan, Jin-Gang Hou, Zi Wang, Chuan-Bo Ding, Wen-Cong Liu, Yi-Nan Zheng, Chen Chen, Yue-Ru Li,[...]. J Agric Food Chem 2019
32
9

Maltol Mitigates Thioacetamide-induced Liver Fibrosis through TGF-β1-mediated Activation of PI3K/Akt Signaling Pathway.
Xiao-Jie Mi, Jin-Gang Hou, Shuang Jiang, Zhi Liu, Shan Tang, Xiang-Xiang Liu, Ying-Ping Wang, Chen Chen, Zi Wang, Wei Li. J Agric Food Chem 2019
44
9


Cisplatin-induced Kidney Dysfunction and Perspectives on Improving Treatment Strategies.
Gi-Su Oh, Hyung-Jin Kim, AiHua Shen, Su Bin Lee, Dipendra Khadka, Arpana Pandit, Hong-Seob So. Electrolyte Blood Press 2014
98
9

An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity.
Penélope D Sánchez-González, Francisco J López-Hernández, José M López-Novoa, Ana I Morales. Crit Rev Toxicol 2011
150
9

Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo.
Zeng Qi, Wei Li, Jing Tan, Cuizhu Wang, Hongqiang Lin, Baisong Zhou, Jinping Liu, Pingya Li. Phytomedicine 2019
24
12

AMP-activated protein kinase regulates autophagic protection against cisplatin-induced tissue injury in the kidney.
L Wei, W Chen, Y Zou, H Huang, B Pan, S Jin, R Huang, S Nie, G Kong. Genet Mol Res 2015
13
23

Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells.
Cheng Yang, Varsha Kaushal, Sudhir V Shah, Gur P Kaushal. Am J Physiol Renal Physiol 2008
193
9

Platycodon grandiflorum Saponins Ameliorate Cisplatin-Induced Acute Nephrotoxicity through the NF-κB-Mediated Inflammation and PI3K/Akt/Apoptosis Signaling Pathways.
Weizhe Zhang, Jingang Hou, Xiaotong Yan, Jing Leng, Rongyan Li, Jing Zhang, Jingjing Xing, Chen Chen, Zi Wang, Wei Li. Nutrients 2018
31
9

Reduction of cisplatin-induced renal and hepatic side effects in rat through antioxidative and anti-inflammatory properties of Malva sylvestris L. extract.
Zeynab Mohamadi Yarijani, Aliashraf Godini, Seyed Hamid Madani, Houshang Najafi. Biomed Pharmacother 2018
14
21

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.
Joungmok Kim, Mondira Kundu, Benoit Viollet, Kun-Liang Guan. Nat Cell Biol 2011
9

Autophagy in the pathogenesis of disease.
Beth Levine, Guido Kroemer. Cell 2008
9

Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity.
Vladislav Volarevic, Bojana Djokovic, Marina Gazdic Jankovic, C Randall Harrell, Crissy Fellabaum, Valentin Djonov, Nebojsa Arsenijevic. J Biomed Sci 2019
103
9

The peroxisome proliferator-activated receptor-γ agonist pioglitazone protects against cisplatin-induced renal damage in mice.
Cristiano R Jesse, Cristiani F Bortolatto, Ethel A Wilhelm, Silvane Souza Roman, Marina Prigol, Cristina W Nogueira. J Appl Toxicol 2014
22
13


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.