A citation-based method for searching scientific literature

Duo Duan, Hu Zhang, Xiaomin Yue, Yuedan Fan, Yadan Xue, Jiajie Shao, Gang Ding, Du Chen, Shitian Li, Hankui Cheng, Xiaoyan Zhang, Wenjuan Zou, Jia Liu, Jian Zhao, Linmei Wang, Bingzhen Zhao, Zhiping Wang, Suhong Xu, Quan Wen, Jie Liu, Shumin Duan, Lijun Kang. Neuron 2020
Times Cited: 14







List of co-cited articles
57 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


In vivo tactile stimulation-evoked responses in Caenorhabditis elegans amphid sheath glia.
Gang Ding, Wenjuan Zou, Hu Zhang, Yadan Xue, Yang Cai, Guifang Huang, Lufeng Chen, Shumin Duan, Lijun Kang. PLoS One 2015
11
36

Glia are essential for sensory organ function in C. elegans.
Taulant Bacaj, Maya Tevlin, Yun Lu, Shai Shaham. Science 2008
125
28

Temporal responses of C. elegans chemosensory neurons are preserved in behavioral dynamics.
Saul Kato, Yifan Xu, Christine E Cho, L F Abbott, Cornelia I Bargmann. Neuron 2014
72
28

A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC.
Aakanksha Singhvi, Bingqian Liu, Christine J Friedman, Jennifer Fong, Yun Lu, Xin-Yun Huang, Shai Shaham. Cell 2016
51
21

Channel-mediated tonic GABA release from glia.
Soojung Lee, Bo-Eun Yoon, Ken Berglund, Soo-Jin Oh, Hyungju Park, Hee-Sup Shin, George J Augustine, C Justin Lee. Science 2010
359
21

The Na+-K+-ATPase is needed in glia of touch receptors for responses to touch in C. elegans.
Christina K Johnson, Jesus Fernandez-Abascal, Ying Wang, Lei Wang, Laura Bianchi. J Neurophysiol 2020
7
42

A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans.
Ying Wang, Alfonso Apicella, Sun-Kyung Lee, Marina Ezcurra, Robert D Slone, Maya Goldmit, William R Schafer, Shai Shaham, Monica Driscoll, Laura Bianchi. EMBO J 2008
49
21


Odour concentration-dependent olfactory preference change in C. elegans.
Kazushi Yoshida, Takaaki Hirotsu, Takanobu Tagawa, Shigekazu Oda, Tokumitsu Wakabayashi, Yuichi Iino, Takeshi Ishihara. Nat Commun 2012
90
21

Odorant-selective genes and neurons mediate olfaction in C. elegans.
C I Bargmann, E Hartwieg, H R Horvitz. Cell 1993
800
21

Decoding the intensity of sensory input by two glutamate receptors in one C. elegans interneuron.
Wenjuan Zou, Jiajun Fu, Haining Zhang, Kang Du, Wenming Huang, Junwei Yu, Shitian Li, Yuedan Fan, Howard A Baylis, Shangbang Gao,[...]. Nat Commun 2018
21
21



TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans.
Xiaomin Yue, Jian Zhao, Xiao Li, Yuedan Fan, Duo Duan, Xiaoyan Zhang, Wenjuan Zou, Yi Sheng, Ting Zhang, Qian Yang,[...]. Neuron 2018
29
21

Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans.
E R Troemel, J H Chou, N D Dwyer, H A Colbert, C I Bargmann. Cell 1995
523
21



Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans.
Hankui Cheng, Yu Liu, Yadan Xue, Jiajie Shao, Zhibing Tan, Siyan Liu, Shumin Duan, Lijun Kang. Front Mol Neurosci 2021
4
75


Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5.
Menachem Katz, Francis Corson, Wolfgang Keil, Anupriya Singhal, Andrea Bae, Yun Lu, Yupu Liang, Shai Shaham. Nat Commun 2019
26
14

Glia-Neuron Interactions in Caenorhabditis elegans.
Aakanksha Singhvi, Shai Shaham. Annu Rev Neurosci 2019
32
14

The structure of the nervous system of the nematode Caenorhabditis elegans.
J G White, E Southgate, J N Thomson, S Brenner. Philos Trans R Soc Lond B Biol Sci 1986
14

The glia of Caenorhabditis elegans.
Grigorios Oikonomou, Shai Shaham. Glia 2011
70
14

The cellular and molecular basis of odor adaptation.
F Zufall, T Leinders-Zufall. Chem Senses 2000
189
14

C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog.
Jie Liu, Alex Ward, Jingwei Gao, Yongming Dong, Nana Nishio, Hitoshi Inada, Lijun Kang, Yong Yu, Di Ma, Tao Xu,[...]. Nat Neurosci 2010
135
14


Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans.
Sreekanth H Chalasani, Nikos Chronis, Makoto Tsunozaki, Jesse M Gray, Daniel Ramot, Miriam B Goodman, Cornelia I Bargmann. Nature 2007
394
14

A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans.
Makoto Tsunozaki, Sreekanth H Chalasani, Cornelia I Bargmann. Neuron 2008
91
14



The complete family of genes encoding G proteins of Caenorhabditis elegans.
G Jansen, K L Thijssen, P Werner, M van der Horst, E Hazendonk, R H Plasterk. Nat Genet 1999
233
14

DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor.
Shana L Geffeney, Juan G Cueva, Dominique A Glauser, Joseph C Doll, Tim Hau-Chen Lee, Misty Montoya, Snetu Karania, Arman M Garakani, Beth L Pruitt, Miriam B Goodman. Neuron 2011
83
14


Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans.
Massimo A Hilliard, Carmela Bergamasco, Salvatore Arbucci, Ronald H A Plasterk, Paolo Bazzicalupo. EMBO J 2004
105
14


Chemosensation in C. elegans.
Cornelia I Bargmann. WormBook 2006
476
14

Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans.
Heon-ick Ha, Michael Hendricks, Yu Shen, Christopher V Gabel, Christopher Fang-Yen, Yuqi Qin, Daniel Colón-Ramos, Kang Shen, Aravinthan D T Samuel, Yun Zhang. Neuron 2010
106
14

Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans.
Hayao Ohno, Shinya Kato, Yasuki Naito, Hirofumi Kunitomo, Masahiro Tomioka, Yuichi Iino. Science 2014
57
14

Parietal-eye phototransduction components and their potential evolutionary implications.
Chih-Ying Su, Dong-Gen Luo, Akihisa Terakita, Yoshinori Shichida, Hsi-Wen Liao, Manija A Kazmi, Thomas P Sakmar, King-Wai Yau. Science 2006
76
14

Light-sensitive neurons and channels mediate phototaxis in C. elegans.
Alex Ward, Jie Liu, Zhaoyang Feng, X Z Shawn Xu. Nat Neurosci 2008
180
14

Chemosensory cell function in the behavior and development of Caenorhabditis elegans.
C I Bargmann, J H Thomas, H R Horvitz. Cold Spring Harb Symp Quant Biol 1990
158
14


Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network.
Michelle C Krzyzanowski, Sarah Woldemariam, Jordan F Wood, Aditi H Chaubey, Chantal Brueggemann, Alexander Bowitch, Mary Bethke, Noelle D L'Etoile, Denise M Ferkey. PLoS Genet 2016
18
14

GABAergic/glutamatergic-glial/neuronal interaction contributes to rapid adaptation in pacinian corpuscles.
Lorraine Pawson, Laura T Prestia, Greer K Mahoney, Burak Güçlü, Philip J Cox, Adam K Pack. J Neurosci 2009
40
14

Lamellar cells in Pacinian and Meissner corpuscles are touch sensors.
Yury A Nikolaev, Viktor V Feketa, Evan O Anderson, Eve R Schneider, Elena O Gracheva, Sviatoslav N Bagriantsev. Sci Adv 2020
11
18

Two novel DEG/ENaC channel subunits expressed in glia are needed for nose-touch sensitivity in Caenorhabditis elegans.
Lu Han, Ying Wang, Rachele Sangaletti, Giulia D'Urso, Yun Lu, Shai Shaham, Laura Bianchi. J Neurosci 2013
28
14

Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila.
Colleen N McLaughlin, Maria Brbić, Qijing Xie, Tongchao Li, Felix Horns, Sai Saroja Kolluru, Justus M Kebschull, David Vacek, Anthony Xie, Jiefu Li,[...]. Elife 2021
27
14

Distinct types of glial cells populate the Drosophila antenna.
Anindya Sen, Chetak Shetty, Dhanisha Jhaveri, Veronica Rodrigues. BMC Dev Biol 2005
27
14

The molecular basis of odor coding in the Drosophila antenna.
Elissa A Hallem, Michael G Ho, John R Carlson. Cell 2004
560
14

Artifact versus reality--how astrocytes contribute to synaptic events.
Maiken Nedergaard, Alexei Verkhratsky. Glia 2012
207
14


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.