A citation-based method for searching scientific literature

Ioana Olan, Aled J Parry, Stefan Schoenfelder, Masako Narita, Yoko Ito, Adelyne S L Chan, Guy St C Slater, Dóra Bihary, Masashige Bando, Katsuhiko Shirahige, Hiroshi Kimura, Shamith A Samarajiwa, Peter Fraser, Masashi Narita. Nat Commun 2020
Times Cited: 7







List of co-cited articles
64 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Suhas S P Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander,[...]. Cell 2014
57

4D Genome Rewiring during Oncogene-Induced and Replicative Senescence.
Satish Sati, Boyan Bonev, Quentin Szabo, Daniel Jost, Paul Bensadoun, Francois Serra, Vincent Loubiere, Giorgio Lucio Papadopoulos, Juan-Carlos Rivera-Mulia, Lauriane Fritsch,[...]. Mol Cell 2020
29
42

Formation of Chromosomal Domains by Loop Extrusion.
Geoffrey Fudenberg, Maxim Imakaev, Carolyn Lu, Anton Goloborodko, Nezar Abdennur, Leonid A Mirny. Cell Rep 2016
693
42

HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types.
Anne Zirkel, Milos Nikolic, Konstantinos Sofiadis, Jan-Philipp Mallm, Chris A Brackley, Henrike Gothe, Oliver Drechsel, Christian Becker, Janine Altmüller, Natasa Josipovic,[...]. Mol Cell 2018
60
42

Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu, Bing Ren. Nature 2012
42

Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner,[...]. Science 2009
42

Lysosome-mediated processing of chromatin in senescence.
Andre Ivanov, Jeff Pawlikowski, Indrani Manoharan, John van Tuyn, David M Nelson, Taranjit Singh Rai, Parisha P Shah, Graeme Hewitt, Viktor I Korolchuk, Joao F Passos,[...]. J Cell Biol 2013
246
42

Cellular Senescence: Defining a Path Forward.
Vassilis Gorgoulis, Peter D Adams, Andrea Alimonti, Dorothy C Bennett, Oliver Bischof, Cleo Bishop, Judith Campisi, Manuel Collado, Konstantinos Evangelou, Gerardo Ferbeyre,[...]. Cell 2019
392
42

Programmed cell senescence during mammalian embryonic development.
Daniel Muñoz-Espín, Marta Cañamero, Antonio Maraver, Gonzalo Gómez-López, Julio Contreras, Silvia Murillo-Cuesta, Alfonso Rodríguez-Baeza, Isabel Varela-Nieto, Jesús Ruberte, Manuel Collado,[...]. Cell 2013
645
42

NOTCH1 mediates a switch between two distinct secretomes during senescence.
Matthew Hoare, Yoko Ito, Tae-Won Kang, Michael P Weekes, Nicholas J Matheson, Daniel A Patten, Shishir Shetty, Aled J Parry, Suraj Menon, Rafik Salama,[...]. Nat Cell Biol 2016
177
42

Two independent modes of chromatin organization revealed by cohesin removal.
Wibke Schwarzer, Nezar Abdennur, Anton Goloborodko, Aleksandra Pekowska, Geoffrey Fudenberg, Yann Loe-Mie, Nuno A Fonseca, Wolfgang Huber, Christian H Haering, Leonid Mirny,[...]. Nature 2017
418
28

Chromatin organization by an interplay of loop extrusion and compartmental segregation.
Johannes Nuebler, Geoffrey Fudenberg, Maxim Imakaev, Nezar Abdennur, Leonid A Mirny. Proc Natl Acad Sci U S A 2018
203
28

The structural basis for cohesin-CTCF-anchored loops.
Yan Li, Judith H I Haarhuis, Ángela Sedeño Cacciatore, Roel Oldenkamp, Marjon S van Ruiten, Laureen Willems, Hans Teunissen, Kyle W Muir, Elzo de Wit, Benjamin D Rowland,[...]. Nature 2020
71
28

Recent evidence that TADs and chromatin loops are dynamic structures.
Anders S Hansen, Claudia Cattoglio, Xavier Darzacq, Robert Tjian. Nucleus 2018
80
28

Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture.
Matteo Vietri Rudan, Christopher Barrington, Stephen Henderson, Christina Ernst, Duncan T Odom, Amos Tanay, Suzana Hadjur. Cell Rep 2015
368
28

On the existence and functionality of topologically associating domains.
Jonathan A Beagan, Jennifer E Phillips-Cremins. Nat Genet 2020
64
28

CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
Ya Guo, Quan Xu, Daniele Canzio, Jia Shou, Jinhuan Li, David U Gorkin, Inkyung Jung, Haiyang Wu, Yanan Zhai, Yuanxiao Tang,[...]. Cell 2015
481
28

Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.
Elphège P Nora, Anton Goloborodko, Anne-Laure Valton, Johan H Gibcus, Alec Uebersohn, Nezar Abdennur, Job Dekker, Leonid A Mirny, Benoit G Bruneau. Cell 2017
602
28

YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment.
Jonathan A Beagan, Michael T Duong, Katelyn R Titus, Linda Zhou, Zhendong Cao, Jingjing Ma, Caroline V Lachanski, Daniel R Gillis, Jennifer E Phillips-Cremins. Genome Res 2017
104
28

Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
Gordana Wutz, Csilla Várnai, Kota Nagasaka, David A Cisneros, Roman R Stocsits, Wen Tang, Stefan Schoenfelder, Gregor Jessberger, Matthias Muhar, M Julius Hossain,[...]. EMBO J 2017
265
28

Cohesin Loss Eliminates All Loop Domains.
Suhas S P Rao, Su-Chen Huang, Brian Glenn St Hilaire, Jesse M Engreitz, Elizabeth M Perez, Kyong-Rim Kieffer-Kwon, Adrian L Sanborn, Sarah E Johnstone, Gavin D Bascom, Ivan D Bochkov,[...]. Cell 2017
641
28

N-terminal domain of the architectural protein CTCF has similar structural organization and ability to self-association in bilaterian organisms.
Artem Bonchuk, Sofia Kamalyan, Sofia Mariasina, Konstantin Boyko, Vladimir Popov, Oksana Maksimenko, Pavel Georgiev. Sci Rep 2020
9
28

CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
Elena M Pugacheva, Naoki Kubo, Dmitri Loukinov, Md Tajmul, Sungyun Kang, Alexander L Kovalchuk, Alexander V Strunnikov, Gabriel E Zentner, Bing Ren, Victor V Lobanenkov. Proc Natl Acad Sci U S A 2020
42
28

Heterochromatin drives compartmentalization of inverted and conventional nuclei.
Martin Falk, Yana Feodorova, Natalia Naumova, Maxim Imakaev, Bryan R Lajoie, Heinrich Leonhardt, Boris Joffe, Job Dekker, Geoffrey Fudenberg, Irina Solovei,[...]. Nature 2019
155
28

Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.
Georg A Busslinger, Roman R Stocsits, Petra van der Lelij, Elin Axelsson, Antonio Tedeschi, Niels Galjart, Jan-Michael Peters. Nature 2017
190
28

A complex secretory program orchestrated by the inflammasome controls paracrine senescence.
Juan Carlos Acosta, Ana Banito, Torsten Wuestefeld, Athena Georgilis, Peggy Janich, Jennifer P Morton, Dimitris Athineos, Tae-Won Kang, Felix Lasitschka, Mindaugas Andrulis,[...]. Nat Cell Biol 2013
840
28

A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence.
Joanna Kaplon, Liang Zheng, Katrin Meissl, Barbara Chaneton, Vitaly A Selivanov, Gillian Mackay, Sjoerd H van der Burg, Elizabeth M E Verdegaal, Marta Cascante, Tomer Shlomi,[...]. Nature 2013
356
28

Defined p16High Senescent Cell Types Are Indispensable for Mouse Healthspan.
Laurent Grosse, Nicole Wagner, Alexander Emelyanov, Clement Molina, Sandra Lacas-Gervais, Kay-Dietrich Wagner, Dmitry V Bulavin. Cell Metab 2020
56
28


IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype.
Kimberley A Wiggins, Aled J Parry, Liam D Cassidy, Melanie Humphry, Steve J Webster, Jane C Goodall, Masashi Narita, Murray C H Clarke. Aging Cell 2019
30
28

The hallmarks of aging.
Carlos López-Otín, Maria A Blasco, Linda Partridge, Manuel Serrano, Guido Kroemer. Cell 2013
28

Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence.
Maria Grazia Vizioli, Tianhui Liu, Karl N Miller, Neil A Robertson, Kathryn Gilroy, Anthony B Lagnado, Arantxa Perez-Garcia, Christos Kiourtis, Nirmalya Dasgupta, Xue Lei,[...]. Genes Dev 2020
53
28

Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.
Darren J Baker, Bennett G Childs, Matej Durik, Melinde E Wijers, Cynthia J Sieben, Jian Zhong, Rachel A Saltness, Karthik B Jeganathan, Grace Casaclang Verzosa, Abdulmohammad Pezeshki,[...]. Nature 2016
28

Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence.
Selene Glück, Baptiste Guey, Muhammet Fatih Gulen, Katharina Wolter, Tae-Won Kang, Niklas Arndt Schmacke, Anne Bridgeman, Jan Rehwinkel, Lars Zender, Andrea Ablasser. Nat Cell Biol 2017
351
28

Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase.
Salim Abdisalaam, Souparno Bhattacharya, Shibani Mukherjee, Debapriya Sinha, Kalayarasan Srinivasan, Mingrui Zhu, Esra A Akbay, Hesham A Sadek, Jerry W Shay, Aroumougame Asaithamby. J Biol Chem 2020
6
33

cGAS is essential for cellular senescence.
Hui Yang, Hanze Wang, Junyao Ren, Qi Chen, Zhijian J Chen. Proc Natl Acad Sci U S A 2017
345
28

Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network.
Thomas Kuilman, Chrysiis Michaloglou, Liesbeth C W Vredeveld, Sirith Douma, Remco van Doorn, Christophe J Desmet, Lucien A Aarden, Wolter J Mooi, Daniel S Peeper. Cell 2008
28

The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration.
Birgit Ritschka, Mekayla Storer, Alba Mas, Florian Heinzmann, Mari Carmen Ortells, Jennifer P Morton, Owen J Sansom, Lars Zender, William M Keyes. Genes Dev 2017
245
28

Telomeres shorten during ageing of human fibroblasts.
C B Harley, A B Futcher, C W Greider. Nature 1990
28


Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death.
Hui Jiang, Xiaoyu Xue, Swarupa Panda, Ajinkya Kawale, Richard M Hooy, Fengshan Liang, Jungsan Sohn, Patrick Sung, Nelson O Gekara. EMBO J 2019
68
28

Nuclear cGAS suppresses DNA repair and promotes tumorigenesis.
Haipeng Liu, Haiping Zhang, Xiangyang Wu, Dapeng Ma, Juehui Wu, Lin Wang, Yan Jiang, Yiyan Fei, Chenggang Zhu, Rong Tan,[...]. Nature 2018
187
28

Context-dependent effects of cellular senescence in cancer development.
Pacome Lecot, Fatouma Alimirah, Pierre-Yves Desprez, Judith Campisi, Christopher Wiley. Br J Cancer 2016
86
28

Reversal of human cellular senescence: roles of the p53 and p16 pathways.
Christian M Beauséjour, Ana Krtolica, Francesco Galimi, Masashi Narita, Scott W Lowe, Paul Yaswen, Judith Campisi. EMBO J 2003
837
28

Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders.
Darren J Baker, Tobias Wijshake, Tamar Tchkonia, Nathan K LeBrasseur, Bennett G Childs, Bart van de Sluis, James L Kirkland, Jan M van Deursen. Nature 2011
28

An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA.
Marco Demaria, Naoko Ohtani, Sameh A Youssef, Francis Rodier, Wendy Toussaint, James R Mitchell, Remi-Martin Laberge, Jan Vijg, Harry Van Steeg, Martijn E T Dollé,[...]. Dev Cell 2014
739
28

Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging.
Weiqi Zhang, Jingyi Li, Keiichiro Suzuki, Jing Qu, Ping Wang, Junzhi Zhou, Xiaomeng Liu, Ruotong Ren, Xiuling Xu, Alejandro Ocampo,[...]. Science 2015
265
28

Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
Christelle Lenain, Carolyn A de Graaf, Ludo Pagie, Nils L Visser, Marcel de Haas, Sandra S de Vries, Daniel Peric-Hupkes, Bas van Steensel, Daniel S Peeper. Genome Res 2017
31
28

Chromatin architecture reorganization during stem cell differentiation.
Jesse R Dixon, Inkyung Jung, Siddarth Selvaraj, Yin Shen, Jessica E Antosiewicz-Bourget, Ah Young Lee, Zhen Ye, Audrey Kim, Nisha Rajagopal, Wei Xie,[...]. Nature 2015
756
28

L1 drives IFN in senescent cells and promotes age-associated inflammation.
Marco De Cecco, Takahiro Ito, Anna P Petrashen, Amy E Elias, Nicholas J Skvir, Steven W Criscione, Alberto Caligiana, Greta Brocculi, Emily M Adney, Jef D Boeke,[...]. Nature 2019
259
28


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.