A citation-based method for searching scientific literature

Z Z Khairullina, A G Tereshchenkov, S A Zavyalova, E S Komarova, D A Lukianov, V N Tashlitsky, I A Osterman, N V Sumbatyan. Biochemistry (Mosc) 2020
Times Cited: 2







List of co-cited articles
6 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity


Binding and Action of Amino Acid Analogs of Chloramphenicol upon the Bacterial Ribosome.
Andrey G Tereshchenkov, Malgorzata Dobosz-Bartoszek, Ilya A Osterman, James Marks, Vasilina A Sergeeva, Pavel Kasatsky, Ekaterina S Komarova, Andrey N Stavrianidi, Igor A Rodin, Andrey L Konevega,[...]. J Mol Biol 2018
21
100

Efficacy and safety of chloramphenicol: joining the revival of old antibiotics? Systematic review and meta-analysis of randomized controlled trials.
Noa Eliakim-Raz, Adi Lador, Yaara Leibovici-Weissman, Michal Elbaz, Mical Paul, Leonard Leibovici. J Antimicrob Chemother 2015
29
100

Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens.
Fengying Dong, Lingmeng Li, Lin Lin, Dannong He, Jingwen Chen, Wei Wei, Dongzhi Wei. Molecules 2017
5
100

Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall.
Sivan Louzoun Zada, Keith D Green, Sanjib K Shrestha, Ido M Herzog, Sylvie Garneau-Tsodikova, Micha Fridman. ACS Infect Dis 2018
8
100

Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action.
Jack A Dunkle, Liqun Xiong, Alexander S Mankin, Jamie H D Cate. Proc Natl Acad Sci U S A 2010
264
100

Chloramphenicol Derivatives as Antibacterial and Anticancer Agents: Historic Problems and Current Solutions.
George P Dinos, Constantinos M Athanassopoulos, Dionissia A Missiri, Panagiota C Giannopoulou, Ioannis A Vlachogiannis, Georgios E Papadopoulos, Dionissios Papaioannou, Dimitrios L Kalpaxis. Antibiotics (Basel) 2016
38
100


Structure-Activity Relationship of Peptide-Conjugated Chloramphenicol for Inhibiting Escherichia coli.
Jiaqing Wang, Adrianna Shy, Difei Wu, Deani L Cooper, Jiashu Xu, Hongjian He, Wenjun Zhan, Shenghuan Sun, Susan T Lovett, Bing Xu. J Med Chem 2019
3
50

New Chloramphenicol Derivatives from the Viewpoint of Anticancer and Antimicrobial Activity.
Panagiota C Giannopoulou, Dionissia A Missiri, Georgia G Kournoutou, Eleni Sazakli, Georgios E Papadopoulos, Dionissios Papaioannou, George P Dinos, Constantinos M Athanassopoulos, Dimitrios L Kalpaxis. Antibiotics (Basel) 2019
4
50

On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel.
Petros Mamos, Marios G Krokidis, Athanassios Papadas, Panagiotis Karahalios, Agata L Starosta, Daniel N Wilson, Dimitrios L Kalpaxis, George P Dinos. Biochimie 2013
12
50

The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics.
Katherine S Long, Jacob Poehlsgaard, Corinna Kehrenberg, Stefan Schwarz, Birte Vester. Antimicrob Agents Chemother 2006
409
50

Dual effect of chloramphenicol peptides on ribosome inhibition.
Anthony Bougas, Ioannis A Vlachogiannis, Dimitrios Gatos, Stefan Arenz, George P Dinos. Amino Acids 2017
3
50


Conjugation with polyamines enhances the antibacterial and anticancer activity of chloramphenicol.
Ourania N Kostopoulou, Ekaterini C Kouvela, George E Magoulas, Thomas Garnelis, Ioannis Panagoulias, Maria Rodi, Georgios Papadopoulos, Athanasia Mouzaki, George P Dinos, Dionissios Papaioannou,[...]. Nucleic Acids Res 2014
24
50

Unusual acylation of chloramphenicol in Lysobacter enzymogenes, a biocontrol agent with intrinsic resistance to multiple antibiotics.
Wei Zhang, Justin Huffman, Shengying Li, Yuemao Shen, Liangcheng Du. BMC Biotechnol 2017
6
50

Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly.
Yury S Polikanov, Sergey V Melnikov, Dieter Söll, Thomas A Steitz. Nat Struct Mol Biol 2015
120
50

Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria.
F Schlünzen, R Zarivach, J Harms, A Bashan, A Tocilj, R Albrecht, A Yonath, F Franceschi. Nature 2001
709
50

Chloramphenicol Derivatives with Antibacterial Activity Identified by Functional Metagenomics.
Shamima Nasrin, Suresh Ganji, Kavita S Kakirde, Melissa R Jacob, Mei Wang, Ranga Rao Ravu, Paul A Cobine, Ikhlas A Khan, Cheng-Cang Wu, David A Mead,[...]. J Nat Prod 2018
8
50

Synthesis and antimicrobial activity of chloramphenicol-polyamine conjugates.
George E Magoulas, Ourania N Kostopoulou, Thomas Garnelis, Constantinos M Athanassopoulos, Georgia G Kournoutou, Michael Leotsinidis, George P Dinos, Dionissios Papaioannou, Dimitrios L Kalpaxis. Bioorg Med Chem 2015
9
50

Interaction of Chloramphenicol Tripeptide Analogs with Ribosomes.
A G Tereshchenkov, A V Shishkina, V N Tashlitsky, G A Korshunova, A A Bogdanov, N V Sumbatyan. Biochemistry (Mosc) 2016
5
50

The evolving role of chemical synthesis in antibacterial drug discovery.
Peter M Wright, Ian B Seiple, Andrew G Myers. Angew Chem Int Ed Engl 2014
168
50

Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition.
Agata L Starosta, Viktoriya V Karpenko, Anna V Shishkina, Aleksandra Mikolajka, Natalia V Sumbatyan, Frank Schluenzen, Galina A Korshunova, Alexey A Bogdanov, Daniel N Wilson. Chem Biol 2010
56
50

The conformation of nascent polylysine and polyphenylalanine peptides on ribosomes.
W D Picking, O W Odom, T Tsalkova, I Serdyuk, B Hardesty. J Biol Chem 1991
27
50

Bacteria-Targeting Conjugates Based on Antimicrobial Peptide for Bacteria Diagnosis and Therapy.
Haiyan Chen, Cuicui Liu, Dan Chen, Kyle Madrid, Shuwen Peng, Xinyue Dong, Min Zhang, Yueqing Gu. Mol Pharm 2015
36
50

High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition.
Maxim S Svetlov, Elena Plessa, Chih-Wei Chen, Anthony Bougas, Marios G Krokidis, George P Dinos, Yury S Polikanov. RNA 2019
22
50

Revisiting the structures of several antibiotics bound to the bacterial ribosome.
David Bulkley, C Axel Innis, Gregor Blaha, Thomas A Steitz. Proc Natl Acad Sci U S A 2010
160
50

Chloromycetin, a New Antibiotic From a Soil Actinomycete.
J Ehrlich, Q R Bartz, R M Smith, D A Joslyn, P R Burkholder. Science 1947
252
50

Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center.
James Marks, Krishna Kannan, Emily J Roncase, Dorota Klepacki, Amira Kefi, Cédric Orelle, Nora Vázquez-Laslop, Alexander S Mankin. Proc Natl Acad Sci U S A 2016
59
50


Antibiotics: from prehistory to the present day.
Kate Gould. J Antimicrob Chemother 2016
59
50


Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding.
H J Rheinberger, U Geigenmüller, M Wedde, K H Nierhaus. Methods Enzymol 1988
107
50

Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era?
Tomislav Rončević, Jasna Puizina, Alessandro Tossi. Int J Mol Sci 2019
36
50

Dynamics of the context-specific translation arrest by chloramphenicol and linezolid.
Junhong Choi, James Marks, Jingji Zhang, Dong-Hua Chen, Jinfan Wang, Nora Vázquez-Laslop, Alexander S Mankin, Joseph D Puglisi. Nat Chem Biol 2020
9
50


Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance.
Stefan Schwarz, Jianzhong Shen, Kristina Kadlec, Yang Wang, Geovana Brenner Michael, Andrea T Feßler, Birte Vester. Cold Spring Harb Perspect Med 2016
27
50

Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis.
Mario Mardirossian, Quentin Barrière, Tatiana Timchenko, Claudia Müller, Sabrina Pacor, Peter Mergaert, Marco Scocchi, Daniel N Wilson. Antimicrob Agents Chemother 2018
24
50

Hematologic side-effects of chloramphenicol.
W Schröter. Neuropadiatrie 1974
7
50

Platforms for antibiotic discovery.
Kim Lewis. Nat Rev Drug Discov 2013
700
50


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.