W Becker, A F Fuchs. Exp Brain Res 1985
Times Cited: 255
Times Cited: 255
Times Cited
Times Co-cited
Similarity
Human ocular pursuit during the transient disappearance of a visual target.
Simon J Bennett, Graham R Barnes. J Neurophysiol 2003
Simon J Bennett, Graham R Barnes. J Neurophysiol 2003
42
38
The mechanism of prediction in human smooth pursuit eye movements.
G R Barnes, P T Asselman. J Physiol 1991
G R Barnes, P T Asselman. J Physiol 1991
32
A dynamic representation of target motion drives predictive smooth pursuit during target blanking.
Jean-Jacques Orban de Xivry, Marcus Missal, Philippe Lefèvre. J Vis 2008
Jean-Jacques Orban de Xivry, Marcus Missal, Philippe Lefèvre. J Vis 2008
50
Evidence for synergy between saccades and smooth pursuit during transient target disappearance.
Jean-Jacques Orban de Xivry, Simon J Bennett, Philippe Lefèvre, Graham R Barnes. J Neurophysiol 2006
Jean-Jacques Orban de Xivry, Simon J Bennett, Philippe Lefèvre, Graham R Barnes. J Neurophysiol 2006
35
Target acceleration can be extracted and represented within the predictive drive to ocular pursuit.
Simon J Bennett, Jean-Jacques Orban de Xivry, Graham R Barnes, Philippe Lefèvre. J Neurophysiol 2007
Simon J Bennett, Jean-Jacques Orban de Xivry, Graham R Barnes, Philippe Lefèvre. J Neurophysiol 2007
40
Predictive smooth ocular pursuit during the transient disappearance of a visual target.
Simon J Bennett, Graham R Barnes. J Neurophysiol 2004
Simon J Bennett, Graham R Barnes. J Neurophysiol 2004
45
Estimating invisible target speed from neuronal activity in monkey frontal eye field.
Andrei Barborica, Vincent P Ferrera. Nat Neurosci 2003
Andrei Barborica, Vincent P Ferrera. Nat Neurosci 2003
29
A model of the smooth pursuit eye movement system.
D A Robinson, J L Gordon, S E Gordon. Biol Cybern 1986
D A Robinson, J L Gordon, S E Gordon. Biol Cybern 1986
23
21
Cognitive expectations, not habits, control anticipatory smooth oculomotor pursuit.
E Kowler. Vision Res 1989
E Kowler. Vision Res 1989
21
Evidence for a link between the extra-retinal component of random-onset pursuit and the anticipatory pursuit of predictable object motion.
G R Barnes, C J S Collins. J Neurophysiol 2008
G R Barnes, C J S Collins. J Neurophysiol 2008
67
Effects of learning on smooth pursuit during transient disappearance of a visual target.
Laurent Madelain, Richard J Krauzlis. J Neurophysiol 2003
Laurent Madelain, Richard J Krauzlis. J Neurophysiol 2003
35
Saccades and pursuit: two outcomes of a single sensorimotor process.
Jean-Jacques Orban de Xivry, Philippe Lefèvre. J Physiol 2007
Jean-Jacques Orban de Xivry, Philippe Lefèvre. J Physiol 2007
20
Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements.
Natsuko Shichinohe, Teppei Akao, Sergei Kurkin, Junko Fukushima, Chris R S Kaneko, Kikuro Fukushima. Neuron 2009
Natsuko Shichinohe, Teppei Akao, Sergei Kurkin, Junko Fukushima, Chris R S Kaneko, Kikuro Fukushima. Neuron 2009
40
The effect of expectations on slow oculomotor control--IV. Anticipatory smooth eye movements depend on prior target motions.
E Kowler, A J Martins, M Pavel. Vision Res 1984
E Kowler, A J Martins, M Pavel. Vision Res 1984
19
22
Visual motion processing and sensory-motor integration for smooth pursuit eye movements.
S G Lisberger, E J Morris, L Tychsen. Annu Rev Neurosci 1987
S G Lisberger, E J Morris, L Tychsen. Annu Rev Neurosci 1987
18
Supplementary eye fields stimulation facilitates anticipatory pursuit.
M Missal, S J Heinen. J Neurophysiol 2004
M Missal, S J Heinen. J Neurophysiol 2004
22
17
Evidence for object permanence in the smooth-pursuit eye movements of monkeys.
Mark M Churchland, I-Han Chou, Stephen G Lisberger. J Neurophysiol 2003
Mark M Churchland, I-Han Chou, Stephen G Lisberger. J Neurophysiol 2003
25
16
Combined smooth and saccadic ocular pursuit during the transient occlusion of a moving visual object.
Simon J Bennett, Graham R Barnes. Exp Brain Res 2006
Simon J Bennett, Graham R Barnes. Exp Brain Res 2006
34
Predictive responses of periarcuate pursuit neurons to visual target motion.
Kikuro Fukushima, Takanobu Yamanobe, Yasuhiro Shinmei, Junko Fukushima. Exp Brain Res 2002
Kikuro Fukushima, Takanobu Yamanobe, Yasuhiro Shinmei, Junko Fukushima. Exp Brain Res 2002
19
Offset dynamics of human smooth pursuit eye movements: effects of target presence and subject attention.
J Pola, H J Wyatt. Vision Res 1997
J Pola, H J Wyatt. Vision Res 1997
33
Neuronal bases of directional expectation and anticipatory pursuit.
Coralie de Hemptinne, Philippe Lefèvre, Marcus Missal. J Neurosci 2008
Coralie de Hemptinne, Philippe Lefèvre, Marcus Missal. J Neurosci 2008
35
16
Predicting curvilinear target motion through an occlusion.
Leigh A Mrotek, John F Soechting. Exp Brain Res 2007
Leigh A Mrotek, John F Soechting. Exp Brain Res 2007
34
Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs.
W T Newsome, R H Wurtz, H Komatsu. J Neurophysiol 1988
W T Newsome, R H Wurtz, H Komatsu. J Neurophysiol 1988
15
Ocular pursuit responses to repeated, single-cycle sinusoids reveal behavior compatible with predictive pursuit.
G R Barnes, D M Barnes, S R Chakraborti. J Neurophysiol 2000
G R Barnes, D M Barnes, S R Chakraborti. J Neurophysiol 2000
19
Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between.
Stephen G Lisberger. Neuron 2010
Stephen G Lisberger. Neuron 2010
14
Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics.
Jean-Jacques Orban de Xivry, Sébastien Coppe, Gunnar Blohm, Philippe Lefèvre. J Neurosci 2013
Jean-Jacques Orban de Xivry, Sébastien Coppe, Gunnar Blohm, Philippe Lefèvre. J Neurosci 2013
26
The influence of briefly presented randomized target motion on the extraretinal component of ocular pursuit.
G R Barnes, C J S Collins. J Neurophysiol 2008
G R Barnes, C J S Collins. J Neurophysiol 2008
56
Cortical mechanisms of smooth pursuit eye movements with target blanking. An fMRI study.
Rebekka Lencer, Matthias Nagel, Andreas Sprenger, Silke Zapf, Christian Erdmann, Wolfgang Heide, Ferdinand Binkofski. Eur J Neurosci 2004
Rebekka Lencer, Matthias Nagel, Andreas Sprenger, Silke Zapf, Christian Erdmann, Wolfgang Heide, Ferdinand Binkofski. Eur J Neurosci 2004
19
Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task.
Gabriel Diaz, Joseph Cooper, Constantin Rothkopf, Mary Hayhoe. J Vis 2013
Gabriel Diaz, Joseph Cooper, Constantin Rothkopf, Mary Hayhoe. J Vis 2013
15
Modulation of visual responses in macaque frontal eye field during covert tracking of invisible targets.
Quan Xiao, Andrei Barborica, Vincent P Ferrera. Cereb Cortex 2007
Quan Xiao, Andrei Barborica, Vincent P Ferrera. Cereb Cortex 2007
36
Oculomotor prediction of accelerative target motion during occlusion: long-term and short-term effects.
Simon J Bennett, Jean-Jacques Orban de Xivry, Philippe Lefèvre, Graham R Barnes. Exp Brain Res 2010
Simon J Bennett, Jean-Jacques Orban de Xivry, Philippe Lefèvre, Graham R Barnes. Exp Brain Res 2010
63
Timing and velocity randomization similarly affect anticipatory pursuit.
Stephen J Heinen, Jeremy B Badler, William Ting. J Vis 2005
Stephen J Heinen, Jeremy B Badler, William Ting. J Vis 2005
21
Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
Miriam Spering, Alexander C Schütz, Doris I Braun, Karl R Gegenfurtner. J Neurophysiol 2011
Miriam Spering, Alexander C Schütz, Doris I Braun, Karl R Gegenfurtner. J Neurophysiol 2011
17
A model of visually-guided smooth pursuit eye movements based on behavioral observations.
R J Krauzlis, S G Lisberger. J Comput Neurosci 1994
R J Krauzlis, S G Lisberger. J Comput Neurosci 1994
13
Neuronal correlates of inferred motion in primate posterior parietal cortex.
J A Assad, J H Maunsell. Nature 1995
J A Assad, J H Maunsell. Nature 1995
11
Sensitivity of smooth eye movement to small differences in target velocity.
E Kowler, S P McKee. Vision Res 1987
E Kowler, S P McKee. Vision Res 1987
11
The neural basis of smooth pursuit eye movements in the rhesus monkey brain.
Uwe J Ilg, Peter Thier. Brain Cogn 2008
Uwe J Ilg, Peter Thier. Brain Cogn 2008
22
Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds.
H Collewijn, E P Tamminga. J Physiol 1984
H Collewijn, E P Tamminga. J Physiol 1984
11
Quantitative analysis of catch-up saccades during sustained pursuit.
Sophie de Brouwer, Marcus Missal, Graham Barnes, Philippe Lefèvre. J Neurophysiol 2002
Sophie de Brouwer, Marcus Missal, Graham Barnes, Philippe Lefèvre. J Neurophysiol 2002
11
The effect of expectations on slow oculomotor control. II. Single target displacements.
E Kowler, R M Steinman. Vision Res 1979
E Kowler, R M Steinman. Vision Res 1979
11
Neuronal activity in the caudal frontal eye fields of monkeys during memory-based smooth pursuit eye movements: comparison with the supplementary eye fields.
Junko Fukushima, Teppei Akao, Natsuko Shichinohe, Sergei Kurkin, Chris R S Kaneko, Kikuro Fukushima. Cereb Cortex 2011
Junko Fukushima, Teppei Akao, Natsuko Shichinohe, Sergei Kurkin, Chris R S Kaneko, Kikuro Fukushima. Cereb Cortex 2011
40
Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review.
Miriam Spering, Anna Montagnini. Vision Res 2011
Miriam Spering, Anna Montagnini. Vision Res 2011
12
Smooth ocular pursuit during the transient disappearance of an accelerating visual target: the role of reflexive and voluntary control.
Simon J Bennett, Graham R Barnes. Exp Brain Res 2006
Simon J Bennett, Graham R Barnes. Exp Brain Res 2006
38
Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion.
S J Heinen, M Liu. Vis Neurosci 1997
S J Heinen, M Liu. Vis Neurosci 1997
10
Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.