A citation-based method for searching scientific literature

A M Aertsen, P I Johannesma. Biol Cybern 1981
Times Cited: 134







List of co-cited articles
920 articles co-cited >1



Times Cited
  Times     Co-cited
Similarity



Linearity of cortical receptive fields measured with natural sounds.
Christian K Machens, Michael S Wehr, Anthony M Zador. J Neurosci 2004
193
47


Optimizing sound features for cortical neurons.
R C deCharms, D T Blake, M M Merzenich. Science 1998
306
41

Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
D J Klein, D A Depireux, J Z Simon, S A Shamma. J Comput Neurosci 2000
153
40

Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.
F E Theunissen, S V David, N C Singh, A Hsu, W E Vinje, J L Gallant. Network 2001
215
36

Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.
Monty A Escabi, Christoph E Schreiner. J Neurosci 2002
142
36

Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.
Lee M Miller, Monty A Escabí, Heather L Read, Christoph E Schreiner. J Neurophysiol 2002
218
31

Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex.
Jonathan Fritz, Shihab Shamma, Mounya Elhilali, David Klein. Nat Neurosci 2003
493
28

The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
G Björn Christianson, Maneesh Sahani, Jennifer F Linden. J Neurosci 2008
82
31

Feature analysis of natural sounds in the songbird auditory forebrain.
K Sen, F E Theunissen, A J Doupe. J Neurophysiol 2001
162
25



Analyzing neural responses to natural signals: maximally informative dimensions.
Tatyana Sharpee, Nicole C Rust, William Bialek. Neural Comput 2004
179
22

Cooperative nonlinearities in auditory cortical neurons.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. Neuron 2008
86
25

Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds.
Sarah M N Woolley, Thane E Fremouw, Anne Hsu, Frédéric E Theunissen. Nat Neurosci 2005
173
21



Complete functional characterization of sensory neurons by system identification.
Michael C-K Wu, Stephen V David, Jack L Gallant. Annu Rev Neurosci 2006
163
18

Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
Jennifer F Linden, Robert C Liu, Maneesh Sahani, Christoph E Schreiner, Michael M Merzenich. J Neurophysiol 2003
153
17

Modulation spectra of natural sounds and ethological theories of auditory processing.
Nandini C Singh, Frédéric E Theunissen. J Acoust Soc Am 2003
257
16



Triggered correlation.
R de Boer, P Kuyper. IEEE Trans Biomed Eng 1968
291
15

Sound representation methods for spectro-temporal receptive field estimation.
Patrick Gill, Junli Zhang, Sarah M N Woolley, Thane Fremouw, Frédéric E Theunissen. J Comput Neurosci 2006
60
25

A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
Ana Calabrese, Joseph W Schumacher, David M Schneider, Liam Paninski, Sarah M N Woolley. PLoS One 2011
68
22

Multiresolution spectrotemporal analysis of complex sounds.
Taishih Chi, Powen Ru, Shihab A Shamma. J Acoust Soc Am 2005
190
14

Receptive field dimensionality increases from the auditory midbrain to cortex.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. J Neurophysiol 2012
39
35

Integration over multiple timescales in primary auditory cortex.
Stephen V David, Shihab A Shamma. J Neurosci 2013
40
35

Reverse-correlation methods in auditory research.
J J Eggermont, P M Johannesma, A M Aertsen. Q Rev Biophys 1983
146
13

Processing of low-probability sounds by cortical neurons.
Nachum Ulanovsky, Liora Las, Israel Nelken. Nat Neurosci 2003
631
13

Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus.
Monty A Escabí, Lee M Miller, Heather L Read, Christoph E Schreiner. J Neurosci 2003
88
14

Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
David J Klein, Jonathan Z Simon, Didier A Depireux, Shihab A Shamma. J Comput Neurosci 2006
35
37

Spike-triggered neural characterization.
Odelia Schwartz, Jonathan W Pillow, Nicole C Rust, Eero P Simoncelli. J Vis 2006
238
13


Dynamic spectrotemporal feature selectivity in the auditory midbrain.
Nicholas A Lesica, Benedikt Grothe. J Neurosci 2008
47
27



Dynamics of precise spike timing in primary auditory cortex.
Mounya Elhilali, Jonathan B Fritz, David J Klein, Jonathan Z Simon, Shihab A Shamma. J Neurosci 2004
95
12

Estimating sparse spectro-temporal receptive fields with natural stimuli.
Stephen V David, Nima Mesgarani, Shihab A Shamma. Network 2007
72
16

Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent.
Boris Gourévitch, Arnaud Noreña, Gregory Shaw, Jos J Eggermont. Cereb Cortex 2009
38
31



Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
Anqi Qiu, Christoph E Schreiner, Monty A Escabí. J Neurophysiol 2003
50
22

Natural stimulus statistics alter the receptive field structure of v1 neurons.
Stephen V David, William E Vinje, Jack L Gallant. J Neurosci 2004
197
11

Changes of AI receptive fields with sound density.
David T Blake, Michael M Merzenich. J Neurophysiol 2002
64
17



Neural population coding of sound level adapts to stimulus statistics.
Isabel Dean, Nicol S Harper, David McAlpine. Nat Neurosci 2005
305
11

Hierarchical computation in the canonical auditory cortical circuit.
Craig A Atencio, Tatyana O Sharpee, Christoph E Schreiner. Proc Natl Acad Sci U S A 2009
72
15


Co-cited is the co-citation frequency, indicating how many articles cite the article together with the query article. Similarity is the co-citation as percentage of the times cited of the query article or the article in the search results, whichever is the lowest. These numbers are calculated for the last 100 citations when articles are cited more than 100 times.